首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin and 6-hydroxymelatonin protect against iron-induced neurotoxicity   总被引:5,自引:0,他引:5  
Oxidative damage of biological macromolecules is a hallmark of most neurodegenerative disorders such as Alzheimer, Parkinson and diffuse Lewy body diseases. Another important phenomenon involved in these disorders is the alteration of iron homeostasis, with an increase in iron levels. The present study investigated whether 6-hydroxymelatonin (6-OHM) can reduce Fe2+-induced lipid peroxidation and necrotic cell damage in the rat hippocampus in vivo. It was found that 6-OHM administration proved successful in reducing Fe2+-induced neurotoxicity in rat hippocampus. This study provides some evidence of the neuroprotective effects of 6-OHM.  相似文献   

2.
Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E(h)) from positive values to negative ones (down to ~-200 mV). In this study, iron (III) ions (Fe(3+)) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe(2+)) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E(h) values during bacterial growth. It was revealed that ATPase activity with and without N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the F(0)F(1)-ATPase, increased in the presence of even low Fe(3+) concentration (0.05 mM) but decreased in the presence of Fe(2+). It was established that Fe(3+) and Fe(2+) both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe(2+) with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F(0)F(1)) MS116 strains but they were different with Fe(3+) and Fe(2+). It is suggested that the effects of Fe(3+) might be due to interaction of these ions with F(0)F(1) or there might be a Fe(3+)-dependent ATPase different from F(0)F(1) in these bacteria that is active even in the presence of DCCD. Fe(2+) inhibits E. hirae cell growth probably by strong effect on E(h) leading to changes in F(0)F(1) and decreasing its activity.  相似文献   

3.
The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans has been known as an aerobe that respires on iron and sulfur. Here we show that the bacterium could chemolithoautotrophically grow not only on H(2)/O(2) under aerobic conditions but also on H(2)/Fe(3+), H(2)/S(0), or S(0)/Fe(3+) under anaerobic conditions. Anaerobic respiration using Fe(3+) or S(0) as an electron acceptor and H(2) or S(0) as an electron donor serves as a primary energy source of the bacterium. Anaerobic respiration based on reduction of Fe(3+) induced the bacterium to synthesize significant amounts of a c-type cytochrome that was purified as an acid-stable and soluble 28-kDa monomer. The purified cytochrome in the oxidized form was reduced in the presence of the crude extract, and the reduced cytochrome was reoxidized by Fe(3+). Respiration based on reduction of Fe(3+) coupled to oxidation of a c-type cytochrome may be involved in the primary mechanism of energy production in the bacterium on anaerobic iron respiration.  相似文献   

4.
The ferric binding protein (FbpA) transports iron across the periplasmic space of certain Gram-negative bacteria and is an important component involved in iron acquisition by pathogenic Neisseria spp. (Neisseria gonorrheae and Neisseria meningitidis). Previous work has demonstrated that the synergistic anion, required for tight Fe(3+) sequestration by FbpA, also plays a key role in inserting Fe(3+) into the FbpA binding site. Here, we investigate the iron release process from various forms of holo-FbpA, Fe(3+)FbpA-X, during the course of a chelator competition reaction using EDTA and Tiron. Fe(3+)FbpA-X represents the protein assembly complex with different synergistic anions, X = PO(4)(3)(-) and NTA. Stepwise mechanisms of Fe(3+) release are proposed on the basis of kinetic profiles of these chelator competition reactions. Fe(3+)FbpA-PO(4) and Fe(3+)FbpA-NTA react differently with EDTA and Tiron during the Fe(3+)-exchange process. EDTA replaces PO(4)(3)(-) and NTA from the first coordination shell of Fe(3+) and acts as a synergistic anion to give a spectroscopically distinguishable intermediate, Fe(3+)FbpA-EDTA, prior to pulling Fe(3+) out of the protein. Tiron, on the other hand, does not act as a synergistic anion but is a more efficient competing chelator as it removes Fe(3+) from FbpA at rate much faster than EDTA. These results reaffirm the contribution of the synergistic anion to the FbpA iron transport process as the anion, in addition to playing a facilitative role in iron binding, appears to have a "gatekeeper" role, thereby modulating the Fe(3+) release process.  相似文献   

5.
We studied structural modifications of metmyoglobin (Mb) after short-term (6 days) and long-term (30 days) glycation by fructose (fructation). Fructation caused gradual changes in the structure of the protein with respect to increased absorbance at 280 nm, enhanced fluorescence emission (with excitation at 285 nm), increased surface accessible tryptophan residues and reduced α-helix content and change in tertiary structure. However, long-term fructation changed Mb to oxymyoglobin (MbO2), as demonstrated by different spectroscopic (absorption, fluorescence, circular dichroic and electron paramagnetic resonance) studies and trifluoperazine-induced oxygen release experiment. Fructation appeared to modify Arg139 to arg-pyrimidine, which exhibited antioxidative activity and might be involved in the conversion of met (Fe3+) to oxy (Fe2+) form of myoglobin.  相似文献   

6.
The kinetics and spectroscopic properties of the single polypeptide and proteolytically cleaved form of recombinant Fe(3+)Fe(2+) human purple acid phosphatase (recHPAP) exhibit significant differences, primarily due to a difference in pK(es,1) (the value of an acid dissociation constant of the ES complex). These differences are due to the presence or absence, respectively, of an interaction between an aspartate residue in an exposed loop of the protein and one or more active site residues. To further explore the origin of these differences, the ferrous ion of recHPAP has been replaced by zinc. Analysis of the reconstituted Fe(3+)Zn(2+)recHPAP reveals an unexpected catalytic activity versus pH profile, in that the optimal pH is 6.3, similar to that of the proteolytically cleaved form (6.5). Moreover, replacement of the ferrous ion by zinc increases the turnover number more than 10-fold; the pK(es) values are also shifted as expected for the change in the divalent metal ion. Although the EPR spectra of both single polypeptide and proteolytically cleaved Fe(3+)Zn(2+)-recHPAP are independent of pH over the range 4.5-6.2, the visible spectrum of Fe(3+)Zn(2+)-recHPAP is pH dependent. These results suggest that the properties and environment of the divalent metal are important in determining the catalytic properties of mammalian PAPs, and in particular that a solvent molecule coordinated to the divalent metal ion may play a critical role in the catalytic cycle of these enzymes.  相似文献   

7.
To achieve cellular iron deprivation by chelation, it is important to develop chelators with selective metal-binding properties. Selectivity for iron has long been the province of certain oxygen-donor chelators such as desferrioxamine, which target Fe(III) and exploit the strength of a relatively ionic Fe(III)-O interaction. We have been studying novel chelators that possess mechanisms to selectively chelate +2 biometals, particularly tachpyr [N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis-triaminocyclohexane] and derivatives from N,N',N"-trialkylation and pyridine ring alkylation. Metal-exchange and metal-binding competition reactions have been conducted at pH 7.4, 37 degrees C and time periods until no further change was observed (generally 24-48 h). Under anaerobic conditions, tachpyr is strongly selective for iron, binding 95+/-5% Fe(II) versus 5+/-5% Zn(II) in the forms [Fe(tachpyr)](2+) and [Zn(tachpyr)](2+) respectively. Under aerobic conditions, tachpyr complexes Fe(II) more effectively than Fe(III), forming iminopyridyl complexes [Fe(tachpyr-ox-n)](2+) (n=2, 4) by O(2)-induced and iron-mediated oxidative dehydrogenation. Complexes [Fe(tachpyr-ox-n)](2+) are also strongly bound forms of iron that are unaffected by an excess of Zn(II) (75 mol zinc:1 mol iron complex). The preference of tachpyr for iron over zinc under aerobic conditions appears to be hindered by oxidation of Fe(II) to Fe(III), such that the proportions bound are 44+/-10% Fe(II) versus 56+/-10% Zn(II), in the respective forms [Fe(tachpyr-ox-n)](2+) and [Zn(tachpyr)](2+). However, upon addition of the reducing agent Na(2)S(2)O(4) that converts Fe(III) to Fe(II), the binding proportions shift to 76+/-10% Fe(II) versus 24+/-10% Zn(II), demonstrating a clear preference of tachpyr for Fe(II) over Zn(II). Iron(II) is in the low-spin state in [Fe(tachpyr)](2+) and [Fe(tachpyr-ox-n)](2+) (n=2, 4), which is a likely cause of the observed selectivity. N-methylation of tachpyr [giving (N-methyl)(3)tachpyr] results in the loss of selectivity for Fe(II), which is attributed to the steric effect of the methyl groups and a resulting high-spin state of Fe(II) in [Fe(N-methyl)(3)tachpyr)](2+). The relationship of chelator selectivity to cytotoxicity in the tach family will be discussed.  相似文献   

8.
The crystal structure of the iron-free (apo) form of the Haemophilus influenzae Fe(3+)-binding protein (hFbp) has been determined to 1.75 A resolution. Information from this structure complements that derived from the holo structure with respect to the delineation of the process of iron binding and release. A 21 degrees rotation separates the two structural domains when the apo form is compared with the holo conformer, indicating that upon release of iron, the protein undergoes a change in conformation by bending about the central beta-sheet hinge. A surprising finding in the apo-hFbp structure was that the ternary binding site anion, observed in the crystals as phosphate, remained bound. In solution, apo-hFbp bound phosphate with an affinity K(d) of 2.3 x 10(-3) M. The presence of this ternary binding site anion appears to arrange the C-terminal iron-binding residues conducive to complementary binding to Fe(3+), while residues in the N-terminal binding domain must undergo induced fit to accommodate the Fe(3+) ligand. These observations suggest a binding process, the first step of which is the binding of a synergistic anion such as phosphate to the C-terminal domain. Next, iron binds to the preordered half-site on the C-terminal domain. Finally, the presence of iron organizes the N-terminal half-site and closes the interdomain hinge. The use of the synergistic anion and this iron binding process results in an extremely high affinity of the Fe(3+)-binding proteins for Fe(3+) (nFbp K'(eff) = 2.4 x 10(18) M(-1)). This high-affinity ligand binding process is unique among the family of bacterial periplasmic binding proteins and has interesting implications in the mechanism of iron removal from the Fe(3+)-binding proteins during FbpABC-mediated iron transport across the cytoplasmic membrane.  相似文献   

9.
Thermal denaturation of the mesophilic rubredoxin from Clostridium pasteurianum occurs through a number of temperature-dependent steps, the last and irreversible one being release of iron from the [Fe(2+)(SCys)(4)] site. We show here that thermally induced [Fe(2+)(SCys)(4)] site destruction is largely determined by the local environment, and not directly connected to thermostability of the native polypeptide fold of rubredoxin. Hydrophobic residues on the protein surface, V8 and L41, that shield the [Fe(SCys)(4)] site from solvent and form N-H(.)S hydrogen bonds to the metal-coordinating sulfurs, were mutated to residues with both uncharged and charged side chains. On these mutated rubredoxins the temperature dependence was measured for: (1) global unfolding of the protein by NMR, (2) loss of Fe(2+)at various ionic strengths and pH values, (3) the rates of non-denaturing displacement of Fe(2+) by Cd(2+) or Zn(2+). For reversible temperature-dependent changes in the global protein folding that occur prior to loss of iron, no thermostability differences were found among the wild-type, V8A, V8D, L41R, and L41D rubredoxins. However, for irreversible loss of iron from the [Fe(2+)(SCys)(4)] site, relative to the wild-type protein, L41R was more thermostable, V8A was somewhat less thermostable, and the acidic mutants L41D, V8D and [V8D, L41D] showed dramatically lowered thermostability. Lower pH facilitated - both kinetically and thermodynamically - thermally induced iron release, likely through protonation of ligand cysteines' thiols. For all of the rubredoxins a direct correlation was found between the midpoint temperature for thermally induced Fe(2+) loss and the rate of non-denaturing Fe(2+) displacement by Cd(2+) or Zn(2+) at room temperature. A mechanism is proposed involving transient movement of residue-8 and -41 side chains, allowing, and, in the case of negatively charged side chains, also facilitating, attack of a ligand cysteine by the incoming positively charged species (H(+), Cd(2+), or Zn(2+)). Thus, localized charge density and solvent accessibility modulate the stability of Fe(2+) ligation in rubredoxin. However, the reduced [Fe(SCys)(4)] site does not control the thermostability of the native polypeptide fold of rubredoxin.  相似文献   

10.
It was demonstrated that two species of paramagnetic dinitrosyl iron complex (DNIC) with neocuproine form under the following conditions: in addition of neocuproine to a solution of DNIC with phosphate; in gaseous NO treatment of a mixture of Fe(2+) + neocuproine aqueous solutions at pH 6.5-8; and in addition of Fe(2+)--citrate complex + neocuproine to a S-nitrosocysteine (cys-NO) solution. The first form of DNIC with neocuproine is characterized by an EPR signal with g-factor values of 2.087, 2.055, and 2.025, when it is recorded at 77K. At room temperature, the complex displays a symmetric singlet at g = 2.05. The second form of DNIC with neocuproine gives an EPR signal with g-factor values of 2.042, 2.02, and 2.003, which can be recorded at a low temperature only.The revealed complexes are close to DNIC with cysteine in their stability. The ability of neocuproine to bind Fe(2+) in the presence of NO with formation of paramagnetic DNICs warrants critical reevaluation of the statement that neocuproine is only able to bind Cu(+) ions. It was suggested that the observed affinity of neocuproine to iron was due to transition of Fe(2+) in DNIC with neocuproine to Fe(+). In experiments on cys-NO, it was shown that the stabilizing effect of neocuproine on this compound could be due to neocuproine binding to the iron catalyzing decomposition of cys-NO.  相似文献   

11.
The pineal secretory product, melatonin, is a potent, endogenous hydroxyl radical (HO.) scavenger. When melatonin was incubated in different in vitro cell-free HO.-generating systems, a novel melatonin adduct was formed. The molecular weight of this new compound is 248. Its structure was found to be cyclic 3-hydroxymelatonin (3-OHM). A proposed reaction pathway suggests that 3-OHM is the footprint product of the interaction between melatonin with HO. 3-OHM was also detected in the urine of both rats and humans. This urinary metabolite is identical to the compound generated in the in vitro chemical reaction between HO. and melatonin. This provides direct evidence that melatonin, under physiological conditions, functions as an antioxidant to detoxify the most reactive and cytotoxic endogenous HO. When exogenous melatonin was administered to young rats, urinary 3-OHM levels increased significantly in the treated rats compared to those in controls. This indicates that even in young animals there is insufficient endogenously produced melatonin to detoxify the basal levels of the toxic HO. The accumulated damage induced by the escaped HO. that results when the HO. avoids detoxification over the course of a life time may directly or indirectly accelerate aging and aging-related diseases.  相似文献   

12.
Melatonin is a multifunctional biomolecule found in both animals and plants. In this review, the biosynthesis, levels, signaling, and possible roles of melatonin and its metabolites in plants is summarized. Tryptamine 5-hydroxylase (T5H), which catalyzes the conversion of tryptamine into serotonin, has been proposed as a target to create a melatonin knockout mutant presenting a lesion-mimic phenotype in rice. With a reduced anabolic capacity for melatonin biosynthesis and an increased catabolic capacity for melatonin metabolism, all plants generally maintain low melatonin levels. Some plants, including Arabidopsis and Nicotiana tabacum (tobacco), do not possess tryptophan decarboxylase (TDC), the first committed step enzyme required for melatonin biosynthesis. Major melatonin metabolites include cyclic 3-hydroxymelatonin (3-OHM) and 2-hydroxymelatonin (2-OHM). Other melatonin metabolites such as N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetyl-5-methoxykynuramine (AMK) and 5-methoxytryptamine (5-MT) are also produced when melatonin is applied to Oryza sativa (rice). The signaling pathways of melatonin and its metabolites act via the mitogen-activated protein kinase (MAPK) cascade, possibly with Cand2 acting as a melatonin receptor, although the integrity of Cand2 remains controversial. Melatonin mediates many important functions in growth stimulation and stress tolerance through its potent antioxidant activity and function in activating the MAPK cascade. The concentration distribution of melatonin metabolites appears to be species specific because corresponding enzymes such as M2H, M3H, catalases, indoleamine 2,3-dioxygenase (IDO) and N-acetylserotonin deacetylase (ASDAC) are differentially expressed among plant species and even among different tissues within species. Differential levels of melatonin and its metabolites can lead to differential physiological effects among plants when melatonin is either applied exogenously or overproduced through ectopic overexpression.  相似文献   

13.
Biochemical reactivity of melatonin with reactive oxygen and nitrogen species   总被引:16,自引:0,他引:16  
Melatonin (N-acetyl-5-methoxytryptamine), an endogenously produced indole found throughout the animal kingdom, was recently reported, using a variety of techniques, to be a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. Initially, melatonin was discovered to directly scavenge the high toxic hydroxyl radical (*OH). The methods used to prove the interaction of melatonin with the *OH included the generation of the radical using Fenton reagents or the ultraviolet photolysis of hydrogen peroxide (H202) with the use of spin-trapping agents, followed by electron spin resonance (ESR) spectroscopy, pulse radiolysis followed by ESR, and several spectrofluorometric and chemical (salicylate trapping in vivo) methodologies. One product of the reaction of melatonin with the *OH was identified as cyclic 3-hydroxymelatonin (3-OHM) using high-performance liquid chromatography with electrochemical (HPLC-EC) detection, electron ionization mass spectrometry (EIMS), proton nuclear magnetic resonance (1H NMR) and COSY 1H NMR. Cyclic 3-OHM appears in the urine of humans and other mammals and in rat urine its concentration increases when melatonin is given exogenously or after an imposed oxidative stress (exposure to ionizing radiation). Urinary cyclic 3-OHM levels are believed to be a biomarker (footprint molecule) of in vivo *OH production and its scavenging by melatonin. Although the data are less complete, besides the *OH, melatonin in cell-free systems has been shown to directly scavenge H2O2, singlet oxygen (1O2) and nitric oxide (NO*), with little or no ability to scavenge the superoxide anion radical (O2*-) In vitro, melatonin also directly detoxifies the peroxynitrite anion (ONOO-) and/or peroxynitrous acid (ONOOH), or the activated form of this molecule, ONOOH*; the product of the latter interaction is proposed to be 6-OHM. How these in vitro findings relate to the in vivo antioxidant actions of melatonin remains to be established. The ability of melatonin to scavenge the lipid peroxyl radical (LOO*) is debated. The weight of the evidence is that melatonin is probably not a classic chain-breaking antioxidant, since its ability to scavenge the LOO* seems weak. Its ability to reduce lipid peroxidation may stem from its function as a preventive antioxidant (scavenging initiating radicals), or yet unidentified actions. In sum, in vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.  相似文献   

14.
Polynuclear iron complexes of Fe(III) and phosphate occur in seawater and soils and in cells where the iron core of ferritin, the iron storage protein, contains up to 4500 Fe atoms in a complex with an average composition of (FeO.OH)8FeO.OPO3H2. Although phosphate influences the size of the ferritin core and thus the availability of stored iron, little is known about the nature of the Fe(III)-phosphate interaction. In the present study, Fe-phosphate interactions were analyzed in stable complexes of Fe(III).ATP which, in the polynuclear iron form, had phosphate at interior sites. Such Fe(III).ATP complexes are important not only as models but also because they may play a role in intracellular iron transport and in iron toxicity; the complexes were studied by extended x-ray absorption fine structure, EPR, NMR spectroscopy, and measurement of proton release. Mononuclear iron complexes exhibiting a g' = 4.3 EPR signal were formed at Fe:ATP ratios less than or equal to 1:3, and polynuclear iron complexes (Fe greater than or equal to 250, EPR silent at g' = 4.3) were formed at an Fe:ATP ratio of 4:1. No NMR signals due to ATP were observed when Fe was in excess (Fe:ATP = 4:1). Extended x-ray absorption fine structure analysis of the polynuclear Fe(III).ATP complex was able to distinguish an Fe-P distance at 3.27 A in addition to the octahedral O at 1.95 A and 4-5 Fe atoms at 3.36 A. The Fe-O and Fe-Fe distances are the same as in ferritin, and the Fe-P distance is analogous to that in another metal-ATP complex. An observable Fe-P environment in such a large polynuclear iron cluster as the Fe(III).ATP (4:1) complex indicates that the phosphate is distributed throughout rather than merely on the surface, in contrast to earlier models of chelate-stabilized iron clusters. Complexes of Fe(III) and ATP similar to those described here may form in vivo either as normal components of intracellular iron metabolism or during iron excess where the consequent alteration of free nucleotide triphosphate pools could contribute to the observed toxicity of iron.  相似文献   

15.
Nicking of duplex DNA by the iron-mediated Fenton reaction occurs preferentially at a limited number of sequences. Of these, purine-T-G-purine (RTGR) is of particular interest because it is a required element in the upstream regulatory regions of many genes involved in iron and oxidative-stress responses. In order to study the basis of this preferential nicking, NMR studies were undertaken on the RTGR-containing duplex oligonucleotide, d(CGCGATATGACACTAG)/d(CTAGTGTCATATCGCG). One-dimensional and two-dimensional 1H NMR measurements show that Fe(2+) interacts preferentially and reversibly at the ATGA site within the duplex at a rate that is rapid relative to the chemical-shift timescale, while selective paramagnetic NMR line-broadening of the ATGA guanine H8 suggests that Fe(2+) interacts with the guanine N7 moiety. Localization at this site is supported by Fe(2+) titrations of a duplex containing a 7-deazaguanine substitution in place of the guanine in the ATGA sequence. The addition of a 100-fold excess of Mg(2+) over Fe(2+) does not affect the Fe(2+)-dependent broadening. When the ATGA site in the duplex is replaced by ATGT, an RTGR site (GTGA) is created on the opposite strand. Preferential iron localization then takes place at the 3' guanine in GTGA but no longer at the guanine in ATGT, consistent with the lack of preferential cleavage of ATGT sites relative to ATGA sites.  相似文献   

16.
DNA is damaged in vivo by the Fenton reaction mediated by Fe2+ and cellular reductants such as NADH, which reduce Fe3+ to Fe2+ and allow the recycling of iron. To study the response of Escherichia coli to such cycling, the activities of several enzymes involved in nicotinamide nucleotide metabolism were measured following an H2O2 challenge. NADPH-dependent peroxidase, NADH/NADP+ transhydrogenase, and glucose-6-phosphate dehydrogenase were most strongly induced, increasing 2.5-3-fold. In addition, the cellular ratios of NADPH to NADH increased 6- or 92-fold 15 min after exposure to 0.5 or 5 mm H2O2, respectively. In vitro, NADH was oxidized by Fe3+ up to 16-fold faster than NADPH, despite their identical reduction potentials. To understand this rate difference, the interactions of Fe3+ and Ga3+ with NAD(P)H were examined by 1H, 13C, and 31P NMR spectroscopy. Association with NADH occurred primarily with adenine at N7 and the amino group, but for NADPH, strong metal interactions also occurred at the 2'-phosphate group. Interaction of M3+ (Fe3+ or Ga3+) with the adenine ring would bring it into close proximity to the redox-active nicotinamide ring in the folded form of NAD(P)H, but interaction of M3+ with the 2'-phosphate group would avoid this close contact. In addition, as determined by absorbance spectroscopy, the energy of the charge-transfer species was significantly higher for the Fe3+.NADPH complex than for the Fe3+.NADH complex. We therefore suggest that upon exposure to H2O2 the NADH pool is depleted, and NADPH, which is less reactive with Fe3+, functions as the major nicotinamide nucleotide reductant.  相似文献   

17.
In the marine teleost intestine the secretion of bicarbonate increases pH of the lumen (pH 8.4 -9.0) and importantly reduces Ca2+ and Mg2+ concentrations by the formation of insoluble divalent ion carbonates. The alkaline intestinal environment could potentially also cause essential metal carbonate formation reducing bioavailability. Iron accumulation was assessed in the Gulf toadfish (Opsanus beta) gut by mounting intestine segments in modified Ussing chambers fitted to a pH-stat titration system. This system titrates to maintain lumen pH constant and in the process prevents bicarbonate accumulation. The luminal saline pH was clamped to pH 5.5 or 7.0 to investigate the effect of proton concentrations on iron uptake. In addition, redox state was altered (gassing with N2, addition of dithiothreitol (DTT) and ascorbate) to evaluate Fe3+ versus Fe2+ uptake, enabling us to compare a marine teleost intestine model for iron uptake to the mammalian system for non-haem bound iron uptake that occurs via a ferrous/proton (Fe2+/H+) symporter called Divalent Metal Transporter 1 (DMT1). None of the redox altering strategies affected iron (Fe3+ or Fe2+) binding to mucus, but the addition of ascorbate resulted in a 4.6-fold increase in epithelium iron accumulation. This indicates that mucus iron binding is irrespective of valency and suggests that ferrous iron is preferentially transported across the apical surface. Altering luminal saline pH from 7.0 to 5.5 did not affect ferric or ferrous iron uptake, suggesting that if iron is entering via DMT1 in marine fish intestine this transporter works efficiently under circumneutral conditions.  相似文献   

18.
We report that two fractions containing proteins from rat hepatocyte nuclei, obtained by nondenaturing gel electrophoresis, were able to bind iron and ATP, and to hydrolyze ATP. Electroelution of these two active fractions followed by SDS-PAGE analysis showed an identical protein pattern, each one containing four proteins in a range of 62-80 kDa. Phosphorylated protein bands were also detected in acid gel and disappeared after treatment with hydroxylamine/acetate or KOH, and upon chasing with cold ATP. A proteoliposome system, made by the incorporation of these partially purified protein fractions into phosphatidylcholine vesicles, carried out Fe(3+)-citrate uptake in a Mg(2+)-ATP-dependent way; Fe(3+) accumulation increased with time reaching a plateau in 30 min. Iron uptake was not supported by AMP-PNP, was partially inhibited by orthovanadate and was not affected by a mix of specific inhibitors of known ATPases. These results support our previous hypothesis that a putative nuclear membrane Fe(3+)-ATPase is involved in nuclear iron homeostasis.  相似文献   

19.
Anaerobic microbial oxidation of Fe(II) was only recently discovered and very little is known about this metabolism. We recently demonstrated that several dissimilatory perchlorate-reducing bacteria could utilize Fe(II) as an electron donor under anaerobic conditions. Here we report on a more in-depth analysis of Fe(II) oxidation by one of these organisms, Dechlorosoma suillum. Similarly to most known nitrate-dependent Fe(II) oxidizers, D. suillum did not grow heterotrophically or lithoautotrophically by anaerobic Fe(II) oxidation. In the absence of a suitable organic carbon source, cells rapidly lysed even though nitrate-dependent Fe(II) oxidation was still occurring. The coupling of Fe(II) oxidation to a particular electron acceptor was dependent on the growth conditions of cells of D. suillum. As such, anaerobically grown cultures of D. suillum did not mediate Fe(II) oxidation with oxygen as the electron acceptor, while conversely, aerobically grown cultures did not mediate Fe(II) oxidation with nitrate as the electron acceptor. Anaerobic washed cell suspensions of D. suillum rapidly produced an orange/brown precipitate which X-ray diffraction analysis identified as amorphous ferric oxyhydroxide or ferrihydrite. This is similar to all other identified nitrate-dependent Fe(II) oxidizers but is in contrast to what is observed for growth cultures of D. suillum, which produced a mixed-valence Fe(II)-Fe(III) precipitate known as green rust. D. suillum rapidly oxidized the Fe(II) content of natural sediments. Although the form of ferrous iron in these sediments is unknown, it is probably a component of an insoluble mineral, as previous studies indicated that soluble Fe(II) is a relatively minor form of the total Fe(II) content of anoxic environments. The results of this study further enhance our knowledge of a poorly understood form of microbial metabolism and indicate that anaerobic Fe(II) oxidation by D. suillum is significantly different from previously described forms of nitrate-dependent microbial Fe(II) oxidation.  相似文献   

20.
Because it can undergo reversible changes in oxidation state, iron is an excellent biocatalyst but also a potentially deleterious metal. Iron-mediated toxicity has been ascribed to Fe(II), which reacts with oxygen to generate free radicals that damage macromolecules and cause cell death. However, we now report that Fe(III) exhibits microbicidal activity towards strains of Salmonella enterica, Escherichia coli and Klebsiella pneumoniae defective in the Fe(III)-responding PmrA/PmrB signal transduction system. Fe(III) bound to a pmrA Salmonella mutant more effectively than to the isogenic wild-type strain and exerted its microbicidal activity even under anaerobic conditions. Moreover, Fe(III) permeabilized the outer membrane of the pmrA mutant, rendering it susceptible to vancomycin, which is normally non-toxic to Gram-negative species. On the other hand, Fe(III) did not affect the viability of a mutant defective in Fur, the major regulator of cytosolic iron homeostasis, which is hypersensitive to Fe(II)-mediated toxicity. A functional pmrA gene was necessary for bacterial survival in soil. Our results indicate that Fe(III) exerts its microbicidal activity by a mechanism that is oxygen independent and different from that mediated by Fe(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号