首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The buccal ganglia of the marine mollusc Tritonia control a variety of movements associated with feeding, including gut motility. The buccal ganglia and gut contain a class of peptides termed small cardioactive peptides (SCPs). Cobalt backfilling of the nerve which innervates the gut stains several buccal neurons including two pairs of reidentifiable cells, B11 and B12. Both appear white under epiillumination, a characteristic of peptidergic neurons in gastropods. Enzymatic and biochemical analyses of extracts from microdissected B11 cell bodies demonstrate that this neuron contains two species of SCPs. Labeling in organ culture followed by dissection and extraction of cell bodies indicates that these peptides were synthesized in B11. One of these peptides appears to be identical to SCPB, one of two SCPs that have been sequenced. The other SCP present in these neurons is novel. Less extensive analyses of extracts of B12 somata suggest that it also contains the same SCPs. In addition to the peptides, B11 also contains large quantities of acetylcholine (ACh) as determined by a radioenzymatic assay of cell body extracts. B12 does not contain measureable ACh. The concentration of the two peptides and ACh in the B11 cytoplasm is approximately 1 mM. Neuron B11 appears to be an appropriate model system for studying the biochemical and physiological properties of multiple transmitter neurons.  相似文献   

2.
The SCPs are a family of neuropeptides found in many gastropodspecies. Two SCPs with similar sequences have been characterizedin Aplysia. These peptides are potent modulators of centraland peripheral synapses. They also enhance ongoing contractileactivity in spontaneously active tissues such as heart and gut.Their distribution in central ganglia suggests that their predominantrole is in the regulation of feeding behavior. There is goodevidence that the identified SCP-containing neurons, B1 andB2, provide the major central regulation of gut motility duringfeeding through the release of the SCPs from their terminalsin gut. The SCPs have also been localized to motor neurons thatinnervate buccal muscles which generate biting and swallowingmovements. In many of these neurons, the SCPs have been shownto coexist with conventional transmitters such as ACh, or otherpeptides such as FMRFamide. The SCPs appear to be released alongwith conventional transmitters from these neurons to modulatethe effectiveness of the conventional transmitter. In all cases,the SCPs cause an enhancement of the amplitude of contractionsproduced by motor neuron stimulation. The precise mechanismsunderlying this effect vary from muscle to muscle. All of theeffects of the SCPs are mediated by increased cAMP levels intarget tissue. At many sites of action, serotonin produces actionsthat are qualitatively similar to those of the SCPs. This islikely to involve a convergence at the level of the adenylylcyclase. In addition to these peripheral effects, the SCPs alsohave multiple central effects on feeding and other behaviorsin gastropods.  相似文献   

3.
Two large multiple transmitter neurons are located in each buccal ganglion of Tritonia. One of these neurons (B11) contains large quantities of two neuropeptides and acetylcholine (ACh), whereas the other neuron (B12) appears to contain the same two peptides but no ACh. One of the peptides present in these neurons has recently been sequenced and is termed small cardioactive peptide B (SCPB). Both neurons regulate the motility of the gut. Stimulation of B11 produces a posteriorly directed peristalsis after a short latency. This gut movement may normally accompany swallowing. B11 stimulation also produces an increase in the rate of endogenous contractile activity that is similar to that produced by superfusion of the gut with low concentrations (10(-8) M) of SCPB. Stimulation of B12 produces a vigorous longitudinal contraction of the gut, initiated in the posterior part of the gut and not peristaltic in nature. This movement appears incompatible with swallowing behavior and may be involved in regurgitation.  相似文献   

4.
Previous studies have shown that the nervous system and other tissues of molluscs contain a number of peptides that potently excite molluscan hearts. Two such peptides, termed small cardioactive peptides A and B (SCPA and SCPB) are present in large quantities in the nervous system of Aplysia. These peptides are widely distributed within the CNS and peripheral tissues and have been found to be potent modulators of synaptic transmission in Aplysia. SCPB has previously been purified from nervous tissue and sequenced. In this paper, we report the purification of SCPA and propose its sequence. This sequence was confirmed by comparing the chromatographic properties of native SCPA (labelled in organ culture) with a synthetic peptide that has the proposed sequence. A significant proportion of the sequence of the two SCPs is conserved, indicating that they are members of the same peptide class, a finding that is consistent with the recent observation that the two peptide sequences are present in a single precursor.  相似文献   

5.
Feeding behavior in the gastropod mollusc Tritonia diomedea is controlled by a central pattern generator (CPG) in the buccal ganglia. The medially located, large dorsal white cells (B11) have been shown to contain two small cardioactive peptides (SCPs). A smaller nearby neuron (B12) also appears to contain the SCPs. B11's have also been shown to contain acetylcholine (ACh), whereas B12's do not. We have shown earlier that intracellular stimulation of B11's drives contractions of the foregut. Here we show that intracellular electrical stimulation of B11's also elicits excitation of neurons B5 and stimulates the patterned motor output of the CPG. We showed earlier that B12's also stimulate contractions in the foregut, but they are in the opposite direction from those elicited by B11. We show here that electrical stimulation of B12's inhibits the output of the CPG. We showed earlier that superfusion of the isolated gut with SCPB enhances peristalsis, and here we report that superfusion of the buccal ganglion with SCPB elicits enhanced coordinated motor output from the CPG. The peptide has two effects on the bursting output of motor neurons. It produces an increase in (1) the rate of bursting and (2) the spike frequency during each burst. On the other hand, we reported earlier that ACh applied directly to isolated foregut inhibits ongoing peristalsis. Here we demonstrate that ACh superfusion of the buccal ganglion also inhibits the CPG output. Our evidence supports the view that in addition to stimulating foregut contractility, B11's modulate the output of the swallowing CPG by releasing a peptide from central terminals. We suggest roles for B11, B12, the SCPs, and ACh in controlling both central and peripheral aspects of feeding behavior.  相似文献   

6.
Effects of small cardioactive peptide B on the physiology of the isolated heart and gill preparations from the mollusc Aplysia californica were examined. In addition, the effects of small cardioactive peptide B and FMRFamide (Phe-Met-Arg-Phe-NH2) on adenylate cyclase activity were compared in particulate fractions of heart and gill tissues, respectively. Small cardioactive peptide B was found to exert dose-dependent, reversible changes in cardiac activity when perfused through the isolated heart. The EC50 values effecting changes in heart rate and force of contraction were 3 X 10(-11) and 3 X 10(-10) M, respectively; minimum concentrations found to effect changes in heart rate and force of contraction were normally 10(-15) and 10(-12) M, respectively. However, some winter hearts demonstrated threshold sensitivity to small cardioactive peptide B at concentrations as low as 10(-17) M. When perfused through the isolated gill, small cardioactive peptide B was found to suppress the gill withdrawal response amplitude with a threshold concentration of 10(-14) M and an EC50 value of 3 X 10(-11) M. Suppression of the gill withdrawal response amplitude by small cardioactive peptide B was found to be dose dependent and reversible up to a concentration of 10(-9) M. At higher concentrations, the suppression tended to persist irreversibly. Small cardioactive peptide B stimulated adenylate cyclase activity in particulate fractions of both heart and gill tissues with an EC50 of 0.1 and 1.0 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.  相似文献   

8.
The morphology and position of putative neurohemal areas in the peripheral nervous system (ventral nerve cord and retrocerebral complex) of the cricket Gryllus bimaculatus are described. By using antisera to the amines dopamine, histamine, octopamine, and serotonin, and the neuropeptides crustacean cardioactive peptide, FMRFamide, leucokinin 1, and proctolin, an extensive system of varicose fibers has been detected throughout the nerves of all neuromeres, except for nerve 2 of the prothoracic ganglion. Immunoreactive varicose fibers occur mainly in a superficial position at the neurilemma, indicating neurosecretory storage and release of neuroactive compounds. The varicose fibers are projections from central or peripheral neurons that may extend over more than one segment. The peripheral fiber varicosities show segment-specific arrangements for each of the substances investigated. Immunoreactivity to histamine and octopamine is mainly found in the nerves of abdominal segments, whereas serotonin immunoreactivity is concentrated in subesophageal and terminal ganglion nerves. Immunoreactivity to FMRFamide and crustacean cardioactive peptide is widespread throughout all segments. Structures immunoreactive to leucokinin 1 are present in abdominal nerves, and proctolin immunostaining is found in the terminal ganglion and thoracic nerves. Codistribution of peripheral varicose fiber plexuses is regularly seen for amines and peptides, whereas the colocalization of substances in neurons has not been detected for any of the neuroactive compounds investigated. The varicose fiber system is regarded as complementary to the classical neurohemal organs.  相似文献   

9.
The suprafusion of two endogenous neuropeptides, arginine vasotocin (AVT) and small cardioactive peptide B (SCPB), over the abdominal ganglion of Aplysia californica significantly affects the ability of a central gill motor neuron to elicit a gill withdrawal response. Gill motor neurons L7 or LDG1 were depolarized to produce the same number of action potentials (APs) on each trial. When AVT (10(-6)M) was suprafused, the motor neurons' ability to elicit a gill movement was suppressed; while SCPB (10(-6)M) superfusion facilitated the response. Neither peptide altered the passive membrane properties of the motor neurons nor did they affect the duration of their APs. These results are consistent with the hypothesis that the peptides act via central control neurons which exert both suppressive and facilitatory control over gill reflex behaviors and associated neural activity.  相似文献   

10.
Woodruff EA  Broadie K  Honegger HW 《Peptides》2008,29(12):2276-2280
Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.  相似文献   

11.
Although diverse peptides are known to affect invertebrate cardiac activity, the peptidergic regulation of the cardiovascular system of Aplysia is still poorly understood. Asn-D-Trp-Phe-NH(2) (NdWFamide) is a recently purified cardioactive peptide in Aplysia. Pharmacological experiments showed that NdWFamide was one of the most potent cardioexcitatory peptides among the known endogenous cardioactive peptides in Aplysia. NdWFamide-immunopositive neuronal processes were abundant in the cardiovascular region of Aplysia, and many of them originated from neurosecretory cells in the abdominal ganglion (R3-R13 cells). The data suggest that NdWFamide is a cardioexcitatory peptide utilized by R3-R13 cells of Aplysia.  相似文献   

12.
Summary Involvement of neuropeptides in the regulation of cardiac activity in a prosobranch mollusc, Rapana thomasiana, was studied physiologically as well as immunohistochemically. A catch-relaxing peptide (CARP) showed strong inhibitory effects on the heart with a lower threshold than acetylcholine. The action of CARP was in contrast to that of another neuropeptide, FMRFamide, which has previously been shown to enhance the heart beat. Benzoquinonium blocked the effects of acetylcholine and stimulation of right cardiac nerves 1 and 3b, but not those of CARP, suggesting that the effects of nerve stimulation are mainly due to the release of acetylcholine. Immunohistochemical examinations demonstrated that FMRFamide-like and CARP-like immunoreactive neurons are distributed in the visceral ganglia. Although a neuron appeared to show weak immunoreactivity to both antisera, evidence for the coexistence of peptides in a single neuron was not exhibited. Positive immunoreactivity to FMRFamide and CARP antisera also appeared in right cardiac nerves 1 and 3. In the heart, FMRFamide- and CARP-like immunoreactive fibers were restricted to the atrium and the aortic end of the ventricle, consistent with the morphological observation of innervation. The present results suggest that FMRFamide- and CARP-like peptides are involved in regulating the heart beat.  相似文献   

13.
Hui L  Xiang F  Zhang Y  Li L 《Peptides》2012,33(2):230-239
Elucidating how neuropeptides affect physiology may result in delineating peptidergic mechanisms and identifying antagonists for application in basic and translational science. Human neuropeptide Y (NPY) regulates cardiac activity; frequently invertebrates contain orthologs of vertebrate peptides. We report invertebrate NPY-like neuropeptide F (NPF) arrested the signal frequency of the slow phase of the cardiac cycle (EC50 = 1 pM); however, signal frequency of the fast phase was affected only minimally. Neuropeptide F decreased the duration of the slow phase by ~70% (EC50 = 0.6 pM), but increased the duration of the fast phase by ~57% (EC50 = 10nM). Short NPF-1 (sNPF-1) decreased the signal frequency of the slow phase by ~70% (EC50 = 9 nM); yet, signal frequency of the fast phase was unaffected. Short NPF-1 decreased the duration of the slow phase ~55% (EC50 ~50 nM), but increased the duration of the fast phase ~20% without dose dependency. Neuropeptide F and sNPF-1 increased isoelectric period duration. This novel report demonstrated NPY-like peptides are cardioactive but functionally unique. These data contribute to understanding how invertebrate orthologs affect cardiovascular activity. Dipteran fast and slow phases may be generated from separate pacemakers in the abdominal heart and in the anterior thoracocephalic aorta, respectively. Thus, our research suggests NPF and sNPF-1 act through different mechanisms to regulate cardiac activity. Invertebrate NPY-like peptides act in olfaction and feeding yet mechanisms which are associated with their cardioactive effects remain unknown; our work may provide evidence linking their roles in sensory response and cardiac activity.  相似文献   

14.
Ejaz A  Lange AB 《Peptides》2008,29(2):214-225
The dorsal vessel of the Vietnamese stick insect, Baculum extradentatum, consists of a tubular heart and an aorta that extends anteriorly into the head. Alary muscles, associated with the heart, are anchored to the body wall with attachments to the dorsal diaphragm. Alary muscle contraction draws haemolymph into the heart through incurrent ostia. Excurrent ostia lie on the dorsal vessel in the last thoracic and in each of the first two abdominal segments. Muscle fibers are associated with these excurrent ostia. Crustacean cardioactive peptide (CCAP)- and proctolin-like immunoreactivity is present in axons of the segmental nerves that project to the dorsal vessel, and in processes extending over the heart and alary muscles. Proctolin-like immunoreactive processes are also localized to the valves of the incurrent ostia and to the excurrent ostia. Neither the link nerve neurons, nor the lateral cardiac neurons, stain positively for these peptides. Physiological assays reveal dose-dependent increases in heart beat frequency in response to CCAP and proctolin. Isolating the dorsal vessel from the ventral nerve cord led to a change in the pattern of heart contractions, from a tonic, stable heart beat, to one which was phasic. The tonic nature was restored by the application of CCAP.  相似文献   

15.
The heartbeat of adult Drosophila melanogaster displays two cardiac phases, the anterograde and retrograde beat, which occur in cyclic alternation. Previous work demonstrated that the abdominal heart becomes segmentally innervated during metamorphosis by peripheral neurons that express crustacean cardioactive peptide (CCAP). CCAP has a cardioacceleratory effect when it is applied in vitro. The role of CCAP in adult cardiac function was studied in intact adult flies using targeted cell ablation and RNA interference (RNAi). Optical detection of heart activity showed that targeted ablation of CCAP neurons selectively altered the anterograde beat, without apparently altering the cyclic cardiac reversal. Normal development of the abdominal heart and of the remainder of cardiac innervation in flies lacking CCAP neurons was confirmed by immunocytochemistry. Thus, in addition to its important role in ecdysis behavior (the behavior used by insects to shed the remains of the old cuticle at the end of the molt), CCAP may control the level of activity of the anterograde cardiac pacemaker in the adult fly. Expression of double stranded CCAP RNA in the CCAP neurons (targeted CCAP RNAi) caused a significant reduction in CCAP expression. However, this reduction was not sufficient to compromise CCAP's function in ecdysis behavior and heartbeat regulation.  相似文献   

16.
Decapod crustacean pericardial organs contain extensive neurohormonal reserves which can be released directly into the haemolymph to act as physiological modulators. The present paper concerns the in vivo effects of two pericardial peptides, proctolin and crustacean cardioactive peptide, on cardiovascular dynamics in the crab Cancer magister. Infusion of proctolin into the pericardial sinus caused a slight decrease in heart rate concurrent with a large increase in cardiac stroke volume. It decreased haemolymph flow anteriorly through the paired anterolateral arteries and increased flow posteriorly and ventrally through the posterior aorta and sternal artery, respectively. The threshold for responses occurred at circulating concentrations of 10-9 mol·l-1, and haemolymph flows remained elevated for up to 30 min after peptide infusion. The effects of crustacean cardioactive peptide were less dramatic. Heart rate was not affected but a significant increase in stroke volume was observed. Crustacean cardioactive peptide increased haemolymph flow through the anterolateral arteries and increased scaphognathite rate. The threshold for crustacean cardioactive peptide activity was higher than for proctolin (10-7 mol·l-1 and 10-6 mol·l-1) but the responses to crustacean cardioactive peptide were of longer duration. The effects of proctolin on regional haemeolymph distribution in Cancer magister closely resemble the cardiovascular responses of this species when exposed to hypoxic conditions. These peptides may be implicated as cardiovascular regulators during environmental perturbations.  相似文献   

17.
BACKGROUND: At the end of each molt, insects shed their old cuticle by performing the ecdysis sequence, an innate behavior consisting of three steps: pre-ecdysis, ecdysis, and postecdysis. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. RESULTS: To elucidate neural substrates underlying the ecdysis sequence, we identified neurons expressing ETH receptors (ETHRs) in Drosophila. Distinct ensembles of ETHR neurons express numerous neuropeptides including kinin, FMRFamides, eclosion hormone (EH), crustacean cardioactive peptide (CCAP), myoinhibitory peptides (MIP), and bursicon. Real-time imaging of intracellular calcium dynamics revealed sequential activation of these ensembles after ETH action. Specifically, FMRFamide neurons are activated during pre-ecdysis; EH, CCAP, and CCAP/MIP neurons are active prior to and during ecdysis; and activity of CCAP/MIP/bursicon neurons coincides with postecdysis. Targeted ablation of specific ETHR ensembles produces behavioral deficits consistent with their proposed roles in the behavioral sequence. CONCLUSIONS: Our findings offer novel insights into how a command chemical orchestrates an innate behavior by stepwise recruitment of central peptidergic ensembles.  相似文献   

18.
The cells in the embryonic CNS of the tobacco hawkmoth, Manduca sexta, that synthesize a cardioacceleratory peptide 2 (CAP2)-like antigen were identified using immunohistochemical techniques. Two distinct neurosecretory cell types were present in the abdominal ventral nerve cord (VNC) that contain CAP2-like immunoreactivity during late embryogenesis: a pair of large (diameter range 15-20 microns) cells lying along the posterior, dorsal midline of abdominal ganglia A4-A8, and a bilateral set of four smaller (diameter range 6-11 microns) neurons which lie at the base of each ventral root in abdominal ganglia A2-A8. CAP2-like accumulation appeared to follow independent patterns in the two cell types. CAP2-like immunoreactivity began at 60% of embryo development (DT) in the medial cells, accumulated steadily throughout embryogenesis, and dropped markedly during hatching. Lateral cells synthesized the CAP2-like antigen later in development (70% DT) and showed a sharp drop in antigen levels between 75% and 80% of embryonic development. Extracts from developing M. sexta embryos were found to contain a cardioactive factor capable of accelerating the contraction frequency of the pharate adult moth heart in a fashion similar to CAP2. Immunoprecipitation with a monoclonal antibody that specifically recognizes the two endogenous Manduca cardioacceleratory peptides and purification using high pressure liquid chromatography identified this factor as cardioacceleratory peptide 2 (CAP2). Using an in vitro heart bioassay, the levels of this cardioactive neuropeptide were traced during the development of the M. sexta embryo. As with the immunohistochemical results, two periods during embryogenesis were identified in which the level of CAP2 dropped markedly: between 75% and 80% development, and at hatching. Embryo bioassays of CAP2 activity were used to identify possible target tissues for physiological activity during these two putative release times. CAP2 was found to accelerate contraction frequency in the embryonic heart and hindgut of Manduca in a dose-dependent fashion. Of these two possible targets, the hindgut proved to be more sensitive to CAP2, having a lower response threshold and a longer duration of response to a given concentration of the exogenously applied peptide. Based on these immunocytochemical, pharmacological and biochemical results, and on a previously published detailed analysis of Manduca embryogenesis, we conclude that CAP2 is probably released from a specific set of identified neurosecretory cells in the abdominal VNC to modulate embryonic gut activity at 75-80% of embryo development during ingestion of the extra-embryonic yolk.  相似文献   

19.
Adult female mosquitoes rely on carbohydrate-rich plant nectars as their main source of energy. In the present study we tested whether the deprivation of a carbohydrate dietary source or the deprivation of both carbohydrate and water affects mosquito heart physiology. Intravital video imaging of Anopheles gambiae showed that, relative to sucrose fed mosquitoes, the deprivation of both sucrose and water for 24 h, but not the deprivation of sucrose alone, reduces the heart contraction rate. Measurement of the protein, carbohydrate and lipid content of mosquitoes in the three treatment groups did not explain this cardiac phenotype. However, while the deprivation of sucrose reduced mosquito weight and abdominal width, the deprivation of both sucrose and water reduced mosquito weight even further without augmenting the change in abdominal width, indirectly suggesting that starvation and dehydration reduces hemolymph pressure. Analysis of the mRNA levels of crustacean cardioactive peptide (CCAP), FMRFamide, corazonin, neuropeptide F and short neuropeptide F then suggested that these neuropeptides do not regulate the cardiac phenotype observed. However, relative to sucrose fed and sucrose deprived mosquitoes, the mRNA level of nitric oxide synthase (NOS) was significantly elevated in mosquitoes that had been deprived of both sucrose and water. Given that nitric oxide suppresses the heart rate of vertebrates and invertebrates, these data suggest a role for this free radical in modulating mosquito heart physiology.  相似文献   

20.
Myosuppressin peptides dramatically diminish contractions of the gut and heart. Thus, delineating mechanisms involved in myosuppressin signaling may provide insight into peptidergic control of muscle contractility. Drosophila myosuppressin (DMS, TDVDHVFLRFamide) structure-activity relationship (SAR) was investigated to identify an antagonist and explore signaling. Alanyl-substituted, N-terminal truncated, and modified amino acid analogs identified residues and peptide length required for activity. Immunochemistry independently provided insight into myosuppressin mechanisms. DMS decreased gut motility and cardiac contractility dose dependently; the different effective concentrations at half maximal-response were indicative of tissue-specific mechanisms. Replacement of aspartic acid 2 (D2) generated an analog with different developmental- and tissue-specific effects; [A2] DMS mimicked DMS in adult gut (100% inhibition), yet decreased larval gut contractions by only 32% with increased potency in pupal heart (126% inhibition). The DMS active core differed across development and in tissues; adult (DHVFLRFamide) and larval gut (TDVDHVFLRFamide), and adult (VFLRFamide) and pupal heart (VFLRFamide). Substitution of D2 and D4 with a modified amino acid, p-benzoyl-phenylalanine, produced developmental- and tissue-specific antagonists. In the presence of protease inhibitors, DMS and VFLRFamide were more effective in adult gut, but lower or unchanged in pupal heart compared to peptide or analog alone, respectively. DMS-specific antisera stained neurons that innervated the gut or heart. This study describes novel antagonists and data to identify developmental- and tissue-specific mechanisms underlying the pleotropic effects of myosuppressin in muscle physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号