首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue-specific patterns and levels of protein expression were characterized in transgenic carrot plants transformed with the β-glucuronidase (GUS) gene driven by one of five promoters: Cauliflower mosaic virus 35S (35S) and double 35S (D35S), Arabidopsis ubiquitin (UBQ3), mannopine synthase (mas2) from Agrobacterium tumefaciens or the rooting loci promoter (rolD) from A. rhizogenes. Five independently transformed carrot lines of each promoter construct were assessed for GUS activity. In leaves, activity was highest in plants with the D35S, 35S and UBQ3 promoters, while staining was weak in plants with the mas2 promoter, and only slight visual staining was present in the leaf veins of plants containing rolD promoter . Strong staining was seen in the lateral roots, including root tips, hairs and the vascular tissues of plants expressing the 35S, D35S and UBQ3. Lateral roots of plants containing the rolD construct also showed staining in these tissues while the mas2 promoter exhibited heightened staining in the root tips. Relatively strong GUS staining was seen throughout the tap root with all the promoters tested.. When GUS expression was quantified, the UBQ3 promoter provided the highest activity in roots of mature plants, while plants with the D35S and 35S promoter constructs had higher activity in the leaves. Although plants containing the mas2 promoter had higher levels of activity compared to the rolD plants, these two promoters were significantly weaker than D35S, 35S and UBQ3. The potential for utilization of specific promoters to target expression of desired transgenes in carrot tissues is demonstrated.  相似文献   

2.
Introgressive lines resulting from crossing common wheat Triticum aestivum with the tetraploid T. timopheevii are characterized by effective resistance to leaf rust caused by Puccinia triticina Eriks. Molecular analysis using 350 specific simple sequence repeat (SSR) markers determined localization of the T. timopheevii genome in chromosomes 1A, 2A, 2B, 5A, 5B, and 6B. A population of F2 offspring of crossing hybrid line 842-2 with common wheat cultivar Skala was obtained for mapping the loci controlling leaf rust resistance. Analysis of association of phenotypic and genotypic data by means of simple interval mapping (SIM) and composite interval mapping (CIM) has shown that the resistance of adult plants is determined by two loci in chromosomes 5B and 2A. The major locus QLr.icg-5B, transferred from T. timopheevii chromosome 5G mapped to the interval of microsatellite loci Xgwm408-Xgwm1257 controls 72% of the phenotypic variance of the trait. The other, minor locus QLr.icg-2A located to chromosome 2A at a distance of 10 cM from Xgwm312 accounts for 7% of the trait expression. Microsatellite markers located near these loci may be used for controlling the transfer of agronomically valuable loci when new lines and cultivars are created.  相似文献   

3.
A pollen-based transient expression system has been developed. Lily pollen grains, wounded by vigorous shaking in the presence of aluminum oxide particles, were transformed by infiltration with Agrobacterium tumefaciens LBA4404 cells harboring the β-glucuronidase (GUS) gene construct, pBI121. In histochemical and fluorometric GUS analysis, the wounding processes allowed efficient transformation and, in cDNA blot hybridization, GUS mRNA synthesis was clearly detected. Lily pollen with appropriate wounds, therefore, can be used conveniently for the rapid production of recombinant proteins.  相似文献   

4.
Over time, many single, all-stage resistance genes to stripe rust (Puccinia striiformis f. sp. tritici) in wheat (Triticum aestivum L.) are circumvented by race changes in the pathogen. In contrast, high-temperature, adult-plant resistance (HTAP), which only is expressed during the adult-plant stage and when air temperatures are warm, provides durable protection against stripe rust. Our objective was to identify major quantitative trait loci (QTL) for HTAP resistance to stripe rust in the spring wheat cultivar ‘Louise’. The mapping population consisted of 188 recombinant inbred lines (RIL) from a Louise (resistant) by ‘Penawawa’ (susceptible) cross. F5:6 lines were evaluated for stripe rust reaction under natural infection in replicated field trials at five locations in the US Pacific Northwest in 2007 and 2008. Infection type (IT) and disease severity were recorded for each RIL 2–4 times per location. In all environments, Penawawa, the susceptible parent, was rated with an IT ranging from 6 to 8 at all growth stages evaluated. In contrast, Louise, the resistant parent, was rated with an IT of 2 or 3 across growth stages. Distribution of IT values was bimodal, indicating a single major gene was affecting the trait. The parents and RIL population were evaluated with 295 polymorphic simple sequence repeat and one single nucleotide polymorphism markers. One major QTL, designated QYrlo.wpg-2BS, associated with HTAP resistance in Louise, was detected on chromosome 2BS (LOD scores ranging from 5.5 to 62.3 across locations and years) within a 16.9 cM region flanked by Xwmc474 and Xgwm148. SSR markers associated with QYrlo.wpg-2BS are currently being used in marker-based forward breeding strategies to transfer the target region into adapted germplasm to improve the durability of resistance in resulting cultivars.  相似文献   

5.
Expansins are thought to be key regulators of cell wall extension during plant growth. In this study, we isolated 18 expansin genes from wheat, nine of which encode α-expansins while the other nine code for β-expansins. The cysteine-rich and tryptophan-rich regions of the deduced amino acid sequences of all 18 expansins were highly conserved. Genomic sequences were obtained for 17 of the genes, and their intron patterns were determined. Four (A, C, D, E) of the six intron positions known in expansin genes from other species were found to be occupied in these wheat expansin genes. Five wheat expansin genes were mapped to chromosomes 1L, 2L, 5L and 6L respectively, by in silico and comparative mapping. The 18 wheat expansin genes were expressed in leaf, root and the developing seed. Moreover, it was demonstrated that four β-expansin genes were up-regulated in the internode tissue in F1 hybrids, suggesting that changes in the regulation of these genes in hybrid might contribute to the heterosis observed in internode length and plant height. We therefore conclude that expansins are encoded by a multigene family in wheat, and could play important roles in growth and development. Z. Lin and Z. Ni contributed to this work equally  相似文献   

6.
7.

Key message

A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined.

Abstract

Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome ScScYcYc), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from Sc and Yc, we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA)10] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Yc, DA5Yc and DA6Sc had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.
  相似文献   

8.
Storage proteins, prolamins, were studied in ten introgression lines of common wheat bred with involvement of Triticum timopheevii (Tt) Zhuk. and five commercial hexaploid wheat cultivars. The lines are resistant to leaf rust. A comparative analysis of the storage proteins in the Triticum aestivum L. (Ta) introgression lines and the parental forms allowed us to (1) detect the active genes of prolamins on the chromosomes homeologous groups 1 and 6 in the introgression lines of T. aestivum and T. timopheevii; (2) clarify their origin; (3) identify the chromosome attribution of the products; (4) estimate the degree of introgression and postulate the introgression mechanisms; and (5) predict the bread-making quality of these introgression lines.  相似文献   

9.

Key message

The new stem rust resistance gene Sr60 was fine-mapped to the distal region of chromosome arm 5AmS, and the TTKSK-effective gene SrTm5 could be a new allele of Sr22.

Abstract

The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the Ug99 race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat Triticum monococcum accession PI 306540. We mapped SrTm5, a previously postulated gene effective to Ug99, on chromosome arm 7AmL, completely linked to Sr22. SrTm5 displayed a different race specificity compared to Sr22 indicating that they are distinct. Sequencing of the Sr22 homolog in PI 306540 revealed a novel haplotype. Characterization of the segregating populations with Pgt race QFCSC revealed an additional resistance gene on chromosome arm 5AmS that was assigned the official name Sr60. This gene was also effective against races QTHJC and SCCSC but not against TTKSK (a Ug99 group race). Using two large mapping populations (4046 gametes), we mapped Sr60 within a 0.44 cM interval flanked by sequenced-based markers GH724575 and CJ942731. These two markers delimit a 54.6-kb region in Brachypodium distachyon chromosome 4 and a 430-kb region in the Chinese Spring reference genome. Both regions include a leucine-rich repeat protein kinase (LRRK123.1) that represents a potential candidate gene. Three CC–NBS–LRR genes were found in the colinear Brachypodium region but not in the wheat genome. We are currently developing a Bacterial Artificial Chromosome library of PI 306540 to determine which of these candidate genes are present in the T. monococcum genome and to complete the cloning of Sr60.
  相似文献   

10.
High-temperature adult-plant (HTAP) resistance from the winter wheat (Triticum aestivum) cultivar 'Stephens' has protected wheat crops from stripe rust caused by Puccinia striiformis f. sp. tritici for 30 years. The objectives of this study were to identify quantitative trait loci (QTL) for HTAP resistance in Stephens through genetic linkage analysis and identify DNA markers linked to the QTL for use in marker-assisted breeding. Mapping populations consisted of 101 recombinant inbred lines (RILs) through single-seed descent from 'Stephens' (resistant) x 'Michigan Amber' (susceptible). F(5), F(6) and F(7) RILs were evaluated for stripe rust resistance at Pullman, WA in 1996, 1997 and 1998, respectively, whereas F(8) RILs were evaluated at Mt Vernon, WA, USA in 2005. The 101 F(8) RILs were evaluated with 250 resistance gene analog polymorphism (RGAP), 245 simple sequence repeat (SSR) and 1 sequence tagged site (STS) markers for genetic linkage map construction. Two QTL, which explained 48-61% of the total phenotypic variation of the HTAP resistance in Stephens, were identified. QYrst.wgp-6BS.1 was within a 3.9-cM region flanked by Xbarc101 and Xbarc136. QYrst.wgp-6BS.2 was mapped in a 17.5-cM region flanked by Xgwm132 and Xgdm113. Both two QTL were physically mapped to the short arm of chromosome 6B, but in different bins. Validation and polymorphism tests of the flanking markers in 43 wheat genotypes indicated that the molecular markers associated with these QTL should be useful in marker-assisted breeding programs to efficiently incorporate HTAP resistance into new wheat cultivars.  相似文献   

11.
12.

Key message

WSL3 encodes β-ketoacyl-CoA reductase (KCR) in rice, in a similar way to YBR159w in yeast, and is essential for VLCFA biosynthesis and leaf wax accumulation.

Abstract

Cuticular waxes on plant surfaces limit non-stomatal water loss, protect plants against deposits of dust and impose a physical barrier to pathogen infection. We identified a wax-deficient mutant of rice, wax crystal-sparse leaf 3 (wsl3), which exhibits a pleiotropic phenotype that includes reduced epicuticular wax crystals on the leaf surface and altered wax composition. Map-based cloning demonstrated that defects in the mutant were caused by two adjacent single-nucleotide changes in a gene encoding β-ketoacyl-CoA reductase (KCR) that catalyzes the second step of the fatty acid elongation reaction. The identity of WSL3 was further confirmed by genetic complementation. Transient assays of fluorescent protein-tagged WSL3 in tobacco protoplasts showed that WSL3 localizes to the endoplasmic reticulum, the compartment of fatty acid elongation in cells. Quantitative PCR and histochemical staining indicated that WSL3 is universally expressed in tissues. RNA interference of WSL3 caused a phenotype that mimicked the wsl3 mutant. Very long-chain fatty acids (VLCFAs) 20:0 and 22:0, or 20:1Δ11 and 22:1Δ13, were detected when WSL3 and Arabidopsis fatty acid elongation 1 (FAE1) were co-expressed in a yeast ybr159wΔ mutant strain. Our results indicated that WSL3 affects rice cuticular wax production by participating in VLCFA elongation.
  相似文献   

13.

Background  

The presence of β-lactamases in Y. enterocolitica has been reported to vary with serovars, biovars and geographical origin of the isolates. An understanding of the β-lactamases in other related species is important for an overall perception of antibiotic resistance in yersiniae. The objective of this work was to study the characteristics of β-lactamases and their genes in strains of Y. intermedia and Y. frederiksenii, isolated from clinical and non-clinical sources in India.  相似文献   

14.
HOMOEOLOGOUS chromosomes of the three genomes of bread wheat (Triticum aestivum 2n=6x=42) are normally prevented from pairing at meiosis by the activity of an allele at the Ph locus on chromosome 5BL (refs. 1–4). This activity is responsible for the regular bivalent-forming meiotic behaviour and for the stable disomic inheritance of T. aestivum. If allelic variation occurs at the PA locus in nature it is extremely rare, although mutation has been induced and mutant alleles isolated3,4.  相似文献   

15.
The host range specificity ofAgrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree ofAgrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 andKangra jat showed higher rate (75%) ofAgrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves ofA. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower 8 (larger surface area covered by water droplet), higher phenol and wax content were more suitable forAgrobacterium infection. Caffeine fraction of tea promotedAgrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited bothAgrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing theAgrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable forAgrobacterium infection the first step inAgrobacterium-mediated genetic transformation.  相似文献   

16.
Recently, a new gene encoding β-glucuronidase from Streptococcus equi subsp. zooepidemicus (SEZ) was identified and expressed in Escherichia coli. In this paper, the characterization of the enzyme is described. Specific enzyme activity was 120,000 U/mg purified protein at 37°C and pH = 7.0. The temperature and pH value, at which the enzyme has the highest specific activity, were determined and were found to be approximately 52°C and 5.6, respectively. The mutant strain SEZ glcHis was designed for the efficient isolation of β-glucuronidase from S. equi subsp. zooepidemicus. It was observed that the specific activity of β-glucuronidase in the cytoplasmic extract of a mutated strain was about 45% lower than in the cytoplasmic extract of a wild-type strain. The specific activity of purified β-glucuronidase from SEZ glcHis was four times as low as β-glucuronidase purified from E. coli. Comparing the specific activity of purified streptococcal β-glucuronidase from E. coli with E. coli β-glucuronidase (the enzyme with the highest specific activity was supplied by Sigma), the former is 1.8 higher than the latter.  相似文献   

17.
The lipase Lip2 of the edible basidiomycete, Pleurotus sapidus, is an extracellular enzyme capable of hydrolysing xanthophyll esters with high efficiency. The gene encoding Lip2 was expressed in Escherichia coli TOP10 using the gene III signal sequence to accumulate proteins in the periplasmatic space. The heterologous expression under control of the araBAD promoter led to the high level production of recombinant protein, mainly as inclusion bodies, but partially in a soluble and active form. A fusion with a C-terminal His tag was used for purification and immunochemical detection of the target protein. This is the first example of a heterologous expression and periplasmatic accumulation of a catalytically active lipase from a basidiomycete fungus.  相似文献   

18.
19.
Ninety-five α-gliadin open reading frames were cloned and sequenced from the somatic hybrid wheat introgression line II-12 and its parents Triticum aestivum cv. Jinan177 (JN177) and Agropyron elongatum. Novel α-gliadin genes were found to originate via point mutation, unequal crossover or slippage of a parental gene, demonstrating that new genes could be rapidly created through somatic hybridization in a manner similar to that previously shown for high-molecular-weight glutenin subunits (HMW-GS) genes. The data reveal the composition and origin of the α-gliadin gene in II-12, showing that: (1) most were homologous to those of JN177; (2) a few were derived direct from A. elongatum; and (3) some new genes were created de novo. A particular quality attribute of interest was the presence or absence of celiac disease (CD) epitopes, which were found to be four times more common among α-gliadin genes from the parent wheat JN177 than in those from A. elongatum. Although four types of CD epitopes were found in introgression line II-12, the number of genes encoded CD epitopes was lower than in JN177 due to the occurrence of pseudogenes. We discuss the benefit of these α-gliadins to wheat breeding. Fanguo Chen, Chunhui Xu, and Mengzhu Chen contributed equally to this work.  相似文献   

20.
Dana Bernátová 《Biologia》2008,63(2):175-176
The paper brings information on an isolated occurrence and morphological characters of Carex × involuta and C. juncella populations in the Vel’ká Fatra Mts. Their presence has been known neither from the territory of Slovakia nor from the whole Western Carpathians till now.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号