首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
A unidirectional promoter can be transformed into a bidirectional module by artificial methods. Here we report the bidirectionalization of the methyl jasmonate (MeJA)-inducible PtDrl02 promoter derived from poplar [(Populus tomentosa × P. bolleana) × P. tomentosa] in planta. Construction of the bidirectional PtDrl02 promoter (designated as mPtDrl02) was rapidly achieved by introducing a minimal 35S promoter in the opposite orientation to the 5' end of PtDrl02. β-Glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes were also interchangeably linked to the 3'-and 5'-ends of mPtDrl02 to produce GFP/mPtDrl02/GUS and GUS/mPtDrl02/GFP vectors, respectively. Using the Agrobacterium-mediated transient expression approach, we demonstrated that the mPtDrl02 module was able to drive gene (GUS and GFP) expression in both orientations simultaneously. Furthermore, the cooperative and concurrent activity from both directions of the mPtDrl02 module was demonstrated following MeJA induction. To our knowledge, this is the first report of an artificial MeJA-responsive bidirectional promoter in perennial plants.  相似文献   

5.
6.
7.
8.
The GLU1 promoter for Fd-glutamate synthase (Fd-GOGAT, EC 1.4.1.7) of Arabidopsis thaliana (ecotype Columbia) confers the expression of the β-glucuronidase (GUS) reporter gene on transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) transformed with the GLU1 promoter-GUS construct. Histochemical analysis reveals that GUS expression is associated with mesophyll and vascular tissue of 14-d-old tobacco seedlings. Red light substitutes for white light and induces a 2-fold increase in the GUS expression associated with mesophyll, veins and vascular tissue. Sucrose also serves as a signal to induce GUS expression in mesophyll and veins of cotyledons. Mature leaves, adapted to the dark for 3 d, conserves the red light- and white light-dependent inductions of GUS activity, while GUS expression is repressed by white light in roots. The mesophyll-located expression of the GLU1 promoter suggests that Fd-glutamate synthase has a function in the photorespiratory ammonium cycling and primary ammonium assimilation. The distinct location of GLU1 promoter expression in the vascular tissue supports the view that Fd-glutamate synthase synthesises glutamate for intracellular transport of glutamine and glutamate.  相似文献   

9.
10.
The bacterial GUS (β-glucuronidase) gene has been used as a reporter gene in plants and bacteria and was recently expressed in filamentous fungi. Here, we report the application of GUS for the establishment of transient and stable gene expression systems in the phytopathogenic fungus Cochliobolus heterostrophus. The utility of the transient expression system is demonstrated in applications involving promoter analysis and in tests of various parameters of a transformation system, for comparing the rates of stable and transient transformation events using GUS as sole screening marker and for comparing different transformation systems using either GUS or a dominant selection marker. For these purposes two plasmids were constructed harbouring the GUS gene and the hph gene of Escherichia coli which confers resistance to the antibiotic hygromycin B (HygB), ligated either to the P1 or GPD1 (glyceraldehyde 3 phosphate dehydrogenase) promoter of C. heterostrophus. In transient expression studies the first appearance of GUS activity was observed within 2 h after transformation and maximal values were obtained after 7 or 10 h, depending on the promoter fused to the GUS gene. At peak activity, the GPD1 promoter was revealed to be five fold stronger than the P1 promoter. The same difference in promoter strenght was observed when the vectors were stably integrated in the fungal genome. Using the GUS gene as a colour selection marker in plate assays, it was possible to detect transformants and monitor the process of transient gene expression visually. Blue transformants obtained by screening for the GUS phenotype were mitotically unstable. Transformants obtained by selecting for HygB resistance were mitotically stable and expressed the β-glucuronidase gene constitutively. GUS activity in fungal colonies was detected fluorometrically in a nondestructive plate assay. The pathogenicity of these strains was unaltered compared with wild type. The GUS phenotype allowed selective blue staining of the colonizing mycelia on maize leaves.  相似文献   

11.
12.
13.

Key message

We report that low fertility during intraspecific hybridization in Chinese white poplar was caused by prefertilization barriers, reduced ovules, and embryonic abortion. Hormone concentrations and gene expression patterns were also evaluated during the fertilization process.

Abstract

Hybrid vigor holds tremendous potential for yield increases and trait improvement; however, some hybridization combinations within Populus show very low fertility. To explore the causes of this low fertility in intraspecific hybridization of Chinese white poplar, we examined anatomical structure, hormone levels and expression of key genes in two unique crossing combinations of Populus × tomentosa “Pt02” × P. × tomentosa “LM50”, and (P. × tomentosa × P. alba cv. bolleana “Ptb”) × P. × tomentosa “LM50”. The seed set potential in the intraspecific hybridization P. × tomentosa “Pt02” × P. × tomentosa “LM50” was quite low, which was likely caused by prefertilization barriers, reduced ovule numbers, and embryonic abortion in ovaries. During intraspecific hybridization, we found reduced indoleacetic acid (IAA) in pistils, which may cause pollen tube deformations and increased IAA in heart-stage embryos, which may affect embryo development. Gibberellin A3 (GA3) decreased from the zygote dormancy stage to globular-stage embryos, which may be caused by failure of fertilization in specific embryos. The maximum zeatin (Z) concentration was found in heart-stage embryos, but Z concentrations quickly decreased, which may affect endosperm development. Increasing concentrations of abscisic acid (ABA) during zygote dormancy and eight-cell proembryo stages likely induced abscission of the infructescence. High ABA concentrations also regulated embryo maturity. Measurement of genes expression showed that high expression of SRK and/or SLG may result in rejection of pollen by stigmatic papillae through a mechanism, reminiscent of self-incompatibility. Also, low expression of LEC1 and FUS3 may cause embryonic abortion. Identification and eventual bypassing of these barriers may allow future genetic improvement of this key woody crop species.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号