首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aroma is one of the most important quality traits of basmati rice (Oryza sativa L) that leads to high consumer acceptance. Earlier three significant QTLs for aroma, namely aro3-1, aro4-1 and aro8-1, have been mapped on rice chromosomes 3, 4 and 8, respectively, using a population of recombinant inbred lines (RILs) derived from a cross between Pusa 1121 (a basmati quality variety) and Pusa 1342 (a non-aromatic variety). For fine mapping of these QTLs, 184 F6 RILs were grown in the Kharif season of 2005 at New Delhi and Karnal, India. A total of 115 new SSR markers covering the three QTL intervals were designed and screened for parental polymorphism. Of these, 26 markers were polymorphic between parents, eight for the interval aro3-1, eight for the interval aro4-1 and ten for the interval aro8-1, thus enriching the density of SSR markers in these QTL intervals. Revised genetic maps were constructed by adding 23 of these new markers to the earlier map, by giving physical order of the markers in the pseudomolecules a preference. In the revised maps, the interval for QTL aro4-1 could not be improved further but QTL aro3-1 was narrowed down to an interval of 390 kbp from the earlier reported interval of 8.6 Mbp and similarly the QTL aro8-1 was narrowed down to a physical interval of 430 kbp. The numbers of candidate genes in the aro3-1 and aro8-1 intervals have now been reduced to 51 and 66, respectively. The badh2 gene on chromosome 8 was not associated with the aroma QTL on this chromosome.  相似文献   

2.
Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Validation of marker-QTL association for genes grain size 3 (GS3), grain weight 2 (GW2), seed width 5 (qSW5) and a QTL qgrl7.1 for grain length was undertaken in a set of 242 diverse rice germplasm. Further, the study was extended to an F2 mapping population derived from cross of Sonasal, a short grain aromatic rice landrace with Pusa Basmati 1121, a variety with extra long slender grains. Seven gene specific markers, namely, SF28, SR17, RGS1and RGS2 based on GS3, W004 for GW2, MS40671 for qSW5 and RM505 for qgrl7.1, were used for validation. Single marker analysis revealed significant association of these markers to grain size and shape. The marker SF28 explained highest phenotypic variance (37 %) while the marker W004 explained lowest variance (2.6 %) for grain length in the germplasm set at the significance level P?<?0.05. Three markers namely, SF28, MS40671 and RM505 were polymorphic between the parents Sonasal and Pusa Basmati 1121. In the F2 population, the marker SF28 linked to gene GS3 explained highest phenotypic variance (32.5 %), while RM505 linked to qgrl7.1 explained 5.4 % of phenotypic variance for grain length. The marker SF28 was found to be most robust in the validation studies both in germplasm and F2 population. The validated gene specific markers can be utilised in marker assisted selection for improving grain size and shape as these traits have significant contribution towards grain quality and grain yield. This is the first study on validation of gene based markers for grain dimension traits in Indian rice germplasm.  相似文献   

4.
5.
水稻粒长QTL定位与主效基因的遗传分析   总被引:1,自引:0,他引:1  
该研究利用短粒普通野生稻矮杆突变体和长粒栽培稻品种KJ01组配杂交组合F_1,构建分离群体F_2;并对该群体粒长进行性状遗传分析,利用平均分布于水稻的12条染色体上的132对多态分子标记对该群体进行QTL定位及主效QTLs遗传分析,为进一步克隆新的主效粒长基因奠定基础,并为水稻粒形育种提供理论依据。结果表明:(1)所构建的水稻杂交组合分离群体F_2的粒长性状为多基因控制的数量性状。(2)对543株F_2分离群体进行QTL连锁分析,构建了控制水稻粒长的连锁遗传图谱,总长为1 713.94 cM,共检测出24个QTLs,只有3个表现为加性遗传效应,其余位点均表现为遗传负效应。(3)检测到的3个主效QTLs分别位于3号染色体的分子标记PSM379~RID24455、RID24455~RM15689和RM571~RM16238之间,且三者对表型的贡献率分别为54.85%、31.02%和7.62%。(4)在标记PSM379~RID24455之间已克隆到的粒长基因为该研究新发现的主效QTL位点。  相似文献   

6.
Grain size is one of the key traits that determines the quality of Basmati rice from the consumers’ as well as the traders’ point of view. Though many genes governing grain size have been identified in indica and japonica, little work has been done in Basmati rice. The present study aims at dissection of a QTL region governing grain size traits in Basmati employing association and linkage mapping approaches. Association mapping revealed that three markers, i.e., RM 6024 (grain breadth), RM1237 and RM18582 (grain length-breadth ratio), which cover 889 kb in the targeted QTL region have been significantly associated with grain size traits. Using linkage mapping, the targeted QTL region has been further delimited to a physical distance of 268 kb that comprises 24 annotated genes. The gene expression analysis of parents, revealed 19 genes differentially expressing within the QTL. Of them, 15 genes showed high expression in Basmati370, while four were expressed in Jaya, and whereas five genes did not show any differential expression between parents. Among differentially expressed genes, a highly expressed gene in Basmati370, Os05g0374200 (Cytokinin dehydrogenase 1 precursor) seems to be involved in accumulation of cytokinins, thus affecting the grain size. Therefore, our findings demonstrated that by complimenting association and linkage mapping, it is likely to dissect a QTL governing grain size traits in Basmati rice and also the QTL could be a potential target for marker-assisted breeding and map-based cloning studies.  相似文献   

7.
The eating and cooking qualities of rice grains are the major determinants of consumer preference and, consequently, the economic value of a specific rice variety. These two qualities are largely determined by the physicochemical properties of the starch, i.e. the starch composition, of the rice grain. In our study, we determined the genetic factors responsible for the physicochemical properties of starch in recombinant inbred lines (RILs) of japonica cv. Tainung 78 × indica cv. Taichung Sen 17 (TCS 17) cultivated over two crop seasons by examining palatability characteristics and several Rapid Viscosity Analyzer (RVA) parameters. Thirty-four quantitative trait loci (QTLs), each explaining between 1.2 and 78.1 % phenotypic variation, were mapped in clusters on eight chromosomes in 190 RILs genotyped with 139 markers. Ten pairs of QTLs were detected in the two environments, of which seven were in agreement with previous findings, suggesting that these QTLs may express stable experimental populations across various environments. Waxy (Wx), which controls amylose synthesis, was determined to be a primary gene regulating the physicochemical properties of cooked rice grains, as indicated by the presence of a major QTL cluster on chromosome 6 and by marker regression analysis. Six starch synthesis-related genes (SSRGs) which were located in the QTL intervals significantly differed in terms of gene expression between the two parents during grain-filling and were important genetic factors affecting physicochemical properties. The expression of four genes, PUL, ISA2, GBSSI, and SSII-3, was significantly upregulated in TCS 17, and this expression was positively correlated with six traits. The effects of the six SSRGs and gene interaction depended on genetic background and environment; grain quality may be fine tuned by selecting for SBE4 for japonica and PUL for indica. We provide valuable information for application in the breeding of new rice varieties as daily staple food and for use in industrial manufacturing by marker-assisted selection.  相似文献   

8.
Identification of quantitative trait loci (QTLs) controlling yield and yield-related traits in rice was performed in the F2 mapping population derived from parental rice genotypes DHMAS and K343. A total of 30 QTLs governing nine different traits were identified using the composite interval mapping (CIM) method. Four QTLs were mapped for number of tillers per plant on chromosomes 1 (2 QTLs), 2 and 3; three QTLs for panicle number per plant on chromosomes 1 (2 QTLs) and 3; four QTLs for plant height on chromosomes 2, 4, 5 and 6; one QTL for spikelet density on chromosome 5; four QTLs for spikelet fertility percentage (SFP) on chromosomes 2, 3 and 5 (2 QTLs); two QTLs for grain length on chromosomes 1 and 8; three QTLs for grain width on chromosomes1, 3 and 8; three QTLs for 1000-grain weight (TGW) on chromosomes 1, 4 and 8 and six QTLs for yield per plant (YPP) on chromosomes 2 (3 QTLs), 4, 6 and 8. Most of the QTLs were detected on chromosome 2, so further studies on chromosome 2 could help unlock some new chapters of QTL for this cross of rice variety. Identified QTLs elucidating high phenotypic variance can be used for marker-assisted selection (MAS) breeding. Further, the exploitation of information regarding molecular markers tightly linked to QTLs governing these traits will facilitate future crop improvement strategies in rice.  相似文献   

9.
Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.  相似文献   

10.
Grain length in rice plays an important role in determining rice appearance, milling, cooking and eating quality. In this study, the genetic basis of grain length was dissected into six main-effect quantitative trait loci (QTLs) and twelve pairs of epistatic QTLs. The stability of these QTLs was evaluated in four environments using an F7 recombinant inbred line (RIL) population derived from the cross between a Japonica variety, Asominori, and an Indica variety, IR24. Moreover, chromosome segment substitution lines (CSSLs) harboring each of the six main-effect QTLs were used to evaluate gene action of QTLs across eight environments. A major QTL denoted as qGL-3a, was found to express stably not only in the isogenic background of Asominori but also in the recombinant background of Asominori and IR24 under multiple environments. The IR24 allele at qGL-3a has a positive effect on grain length. Based on the test of advanced backcross progenies, qGL-3a was dissected as a single Mendelian factor, i.e., long rice grain was controlled by a recessive gene gl-3. High-resolution genetic and physical maps were further constructed for fine mapping gl-3 by using 11 simple sequence repeat (SSR) markers designed using sequence information from seven BAC/PAC clones and a BC4F2 population consisting of 2,068 individuals. Consequently, the gl-3 gene was narrowed down to a candidate genomic region of 87.5 kb long defined by SSR markers RMw357 and RMw353 on chromosome 3, which provides a basis for map-based cloning of this gene and for marker-aided QTL pyramiding in rice quality breeding.  相似文献   

11.
Aroma is an important quality attribute of rice and is a key determinant of its market value. Among the different groups of aromatic rice varieties ‘Basmati’ from the Indian subcontinent and ‘Jasmine’ from Thailand occupy prime position in the international market. In addition, there are a large number of premium short-grain aromatic rice varieties cultivated by farmers in India and South-East Asia that have not been fully commercially utilised as yet. The origin and evolution of aromatic rice varieties is being unravelled by application of genomic tools. The common alleles of aroma gene seem to have their origin in the aromatic group of rice varieties native to the Sub-Himalayan region. Of more than two hundred volatile compounds present in the rice grain, 2-acetyl-l-pyrolline (2-AP) is considered as the key aroma compound present in almost all the aromatic rice varieties. However, there is significant variation in the type and intensity of aroma in the different groups of aromatic rice varieties suggesting involvement of additional chemical compounds in varying proportions. Studies have been undertaken to understand the genetics of rice aroma and to map the genes or quantitative trait loci (QTL) controlling aroma expression. Of the three mapped aroma QTL, qaro8.1 located on rice chromosome S is the most significant and it represents a non-functional allele of BADH2 gene coding for enzyme betaine aldehyde dehydrogenase. Functional allele of the BADH2 gene makes rice non-aromatic. Similarly, specific alleles of BADH1 gene located on rice chromosome 4 within the aroma QTL qaro4.1 show association with the aromatic rice varieties. The gene underlying QTL qaro3.1 on chromosome 3 has not yet been deciphered. Functional molecular markers have been developed for the major aroma QTL on chromosome S and marker-assisted breeding for high yielding aromatic rice varieties is now a reality. To safeguard the reputation of Basmati rice an international code of practice has been developed where DNA markers help check the purity of commercial samples. There is need to use advanced genomic and metabolomic approaches to further study the minor genes controlling rice aroma and understand the variation in type, intensity and stability of rice aroma. It is also required to improve the production and marketing of short grain aromatic rice varieties.  相似文献   

12.
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.  相似文献   

13.
DArT and SSR markers were used to saturate and improve a previous genetic map of RILs derived from the cross Chuan35050 × Shannong483. The new map comprised 719 loci, 561 of which were located on specific chromosomes, giving a total map length of 4008.4 cM; the rest 158 loci were mapped to the most likely intervals. The average chromosome length was 190.9 cM and the marker density was 7.15 cM per marker interval. Among the 719 loci, the majority of marker loci were DArTs (361); the rest included 170 SSRs, 100 EST-SSRs, and 88 other molecular and biochemical loci. QTL mapping for fatty acid content in wheat grain was conducted in this study. Forty QTLs were detected in different environments, with single QTL explaining 3.6-58.1% of the phenotypic variations. These QTLs were distributed on 16 chromosomes. Twenty-two QTLs showed positive additive effects, with Chuan35050 increasing the QTL effects, whereas 18 QTLs were negative with increasing effects from Shannong483. Six sets of co-located QTLs for different traits occurred on chromosomes 1B, 1D, 2D, 5D, and 6B.  相似文献   

14.
Pusa RH10, the widely cultivated superfine grain aromatic rice hybrid, and its parental lines Pusa6B and PRR78 are susceptible to bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae. Pusa1460, a Basmati rice variety, was utilized as the donor for introgressing BB resistance genes xa13 and Xa21 into Pusa6B and PRR78 using a marker-assisted backcross breeding program. The markers RG136 and pTA248 linked to BB resistance genes xa13 and Xa21, respectively, were used for foreground selection. Seventy-four STMS markers polymorphic between Pusa6B and Pusa1460, and 54 STMS markers polymorphic between PRR78 and Pusa1460, were utilized for background selection to recover the recurrent parent genome ranging from 85.14 to 97.30% and 87.04 to 92.81% in the 10 best BC2F5 families of Pusa6B and PRR78, respectively. RM6100, an STMS marker linked to fertility restorer gene (Rf), was used for marker-assisted selection of Rf gene in an improved version of PRR78. The extent of donor segments in the improved version of Pusa6B was estimated to be <0.97 and <2.15 Mb in the genomic regions flanking xa13 and Xa21, respectively, whereas in improved PRR78, it was estimated to be <2.07 and <3.45 Mb in the corresponding genomic regions. Improved lines of Pusa6B and PRR78 showed yield advantages of up to 8.24 and 5.23%, respectively. The performance of the BB-resistant version of Pusa RH10 produced by intercrossing the improved parental lines was on a par with or superior to the original Pusa RH10.  相似文献   

15.
16.
Grain chalkiness is one of the important appearance qualities in rice marketing. But it is a complex trait, controlled by polygenes and easily influenced by the environment. Genetic analysis and QTL detection was carried out on six characteristics of grain chalkiness consisting of the percentage of chalkiness (PGC), white belly (PWB) and white core grains (PWC), and the area of chalkiness (CA), white belly (WBA) and white core (WCA) in brown rice. A total of 16 main-effect QTLs associated with chalkiness characteristics of brown rice were mapped on seven chromosomes over two years. Among them,qPGC7.1 andqPWB7.2 were simultaneously located on chromosome 7 flanked by 7038 and 7042 at LOD scores 4.34 and 3.76, whileqPWC2.1 andqWCA2.1 were simultaneously located on chromosome 2 flanked by RM492 and RM324 with LOD scores of 2.50 and 3.39. Twelve epistatic combinations were detected for five chalkiness characteristics except for CA. Results indicated that WBA was mainly influenced by the additive effects of main-effect QTLs. PGC and PWC were affected by the effects of epistatic QTLs and the interactions between additive-by-additive effects and the environment. The effects of epistatic QTLs and the main-effect QTLs played important roles on CA, PWB and WCA. For the genetic improvement of grain chalkiness in breeding system, more attention should be paid to epistatic effects and the additive effects of main-effect QTLs.  相似文献   

17.
An unusually high temperature during the grain-filling period, such as that caused by global warming, impairs the quality of rice (Oryza sativa L.) grains. This sensitivity to high-temperature stress is different among cultivars, suggesting the possibility of developing a high-temperature-tolerant cultivar. Since marker-assisted selection would reduce time and labor in breeding for such a quantitative trait, we determined the chromosomal region responsible for high-temperature tolerance during the grain-filling period. A high-temperature-sensitive japonica cultivar Tohoku 168 and a tolerant japonica cultivar Kokoromachi were selected as the parental lines of recombinant inbred lines (RILs) by high-temperature stress treatment from 5 to 10 days after anthesis, which was found to be the period most critical for grain quality. Using the RILs, whose genotypes were determined by analysis with 131 DNA markers which were selected as polymorphic markers between these two cultivars from 2,648 DNA markers tested, the quantitative trait locus (QTL) for the percentage of white-back grains was mapped on chromosome 6. The Kokoromachi allele of the QTL, which had a positive additive effect on the high-temperature tolerance, was introduced into the Tohoku 168 genome by repeated backcrossings with marker-assisted selection. Using high-temperature stress treatment of the near isogenic lines developed, the QTL on chromosome 6 was localized within a 1.9-Mb region between two DNA markers, ktIndel001 and RFT1. These DNA markers would be useful not only for breeding high-temperature-tolerant cultivars but also for map-based cloning of the QTL.  相似文献   

18.
Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880–2547, in the vicinity of Ppd-H1 gene. SNP 5880–2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.  相似文献   

19.
Advances in plant breeding through marker-assisted selection (MAS) are only possible when genes or quantitative trait loci (QTLs) can contribute to the improvement of elite germplasm. A population of recombinant inbred lines (RILs) was developed for one of the best crosses of the Spanish National Barley Breeding Program, between two six-row winter barley cultivars Orria and Plaisant. The objective of this study was to identify favourable QTLs for agronomic traits in this population, which may help to optimise breeding strategies for these and other elite materials for the Mediterranean region. A genetic linkage map was developed for 217 RILs, using 382 single nucleotide polymorphism markers, selected from the barley oligonucleotide pool assay BOPA1 and two genes. A subset of 112 RILs was evaluated for several agronomic traits over a period of 2 years at three locations, Lleida and Zaragoza (Spain) and Fiorenzuola d’Arda (Italy), for a total of five field trials. An important segregation distortion occurred during population development in the region surrounding the VrnH1 locus. A QTL for grain yield and length of growth cycle was also found at this locus, apparently linked to a differential response of the VrnH1 alleles to temperature. A total of 33 QTLs was detected, most of them for important breeding targets such as plant height and thousand-grain weight. QTL × environment interactions were prevalent for most of the QTLs detected, although most interactions were of a quantitative nature. Therefore, QTLs suitable for MAS for most traits were identified.  相似文献   

20.
Grain weight is a major determinant of rice grain yield and is widely believed to be controlled by quantitative trait loci (QTL). We have previously reported a new major gene, Mi3, regulating grain length in rice, and that the Mi3 allele from Y34 functioned in a dominant manner. In this paper we report the fine mapping and candidate analysis of Mi3. By employing a chromosome walking strategy in the F2 population of 9311/Y34, the Mi3 gene was finally narrowed to an interval of ~?41.6?kb between the markers RM6881 and LM9 in the pericentromeric region of rice chromosome 3. According to the rice genome annotations, five putative gene loci, LOC_Os03g_29614, LOC_Os03g_29630, LOC_Os03g_29650, LOC_Os03g_29660 and LOC_Os03g_29680, were located in this candidate region. Mi3 was also determined to be a new gene for grain size in rice by allelic analysis with the previously reported genes. Our results will facilitate the cloning and functional characterization of the Mi3 gene and targeted marker-assisted breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号