首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histidine derivative diphthamide occurs uniquely in eukaryotic elongation factor 2 (EF-2), and is the specific target for the diphtheria toxin mono(ADP-ribosyl)transferase. The first step in diphthamide biosynthesis may involve the transfer of an aminocarboxypropyl moiety from S-adenosylmethionine to the imidazole ring of histidine in EF-2, to yield 2-(3-carboxy-3-aminopropyl)histidine and 5′-deoxy-5′-methylthioadenosine (MeSAdo). As the possible nucleoside product of the initial reaction in the diphthamide biosynthetic pathway, MeSAdo could be an inhibitor of diphthamide formation. In the present experiments, we have analyzed the effects of MeSAdo on diphthamide synthesis in a MeSAdo phosphorylase-deficient mutant murine lymphoma cell line (R1.1, clone H3). As measured by susceptibility to diphtheria toxin-induced ADP-ribosylation, MeSAdo inhibited the formation of diphthamide in EF-2. The inhibition was not due to a nonspecific effect on protein synthesis. Indeed, exogenous MeSAdo substantially protected the lymphoma cells from the lethal effects of diphtheria toxin. These results suggest that MeSAdo can specifically modulate the biosynthesis of diphthamide in EF-2 in murine malignant lymphoma cells.  相似文献   

2.
Agrobacterium tumefaciens -mediated transformation of soybean [Glycine max (L.) Merrill. cv. Jack] using immature zygotic cotyledons was investigated to identify important factors that affected transformation efficiency and resulted in the production of transgenic soybean somatic embryos. The factors evaluated were initial immature zygotic cotyledon size, Agrobacterium concentration during inoculation and co-culture and the selection regime. Our results showed that 8- to 10-mm zygotic cotyledons exhibited a higher transformation rate, as indicated by transient GUS gene expression, whereas the smaller zygotic cotyledons, at less than 5 mm, died shortly after co-cultivation. However, the smaller zygotic cotyledon explants were found to have a higher embryogenic potential. Analysis of Agrobacterium and immature cotyledon explant interactions involved two Agrobacterium concentrations for the inoculation phase and three co-culture regimes. No differences in explant survival or somatic embyogenic potential were observed between the two Agrobacterium concentrations tested. Analysis of co-culture regimes revealed that the shorter co-culture times resulted in higher explant survival and higher somatic embryo production on the explants, whereas the co-culture time of 4 days severely reduced survival of the cotyledon explants and lowered their embryogenic potential. Analysis of selection regimes revealed that direct placement of cotyledon explants on hygromycin 25 mg/l was detrimental to explant survival, whereas 10 mg/l gave continued growth and subsequent somatic embryo development and plant regeneration. The overall transformation frequency in these experiments, from initial explant to whole plant, was 0.03 %. Three fertile soybean plants were obtained during the course of these experiments. Enzymatic GUS assays and Southern blot hybridizations confirmed the integration of T-DNA and expression of the GUS-intron gene in the three primary transformants. Analysis of 48 progeny revealed that three copies of the transgene were inherited as a single Mendelian locus. Received: 6 December 1999 / Revised: 11 February 2000 / Accepted: 14 March 2000  相似文献   

3.
Soybean is a major crop species providing valuable feedstock for food, feed and biofuel. In recent years, considerable progress has been made in developing genomic resources for soybean, including on-going efforts to sequence the genome. These efforts have identified a large number of soybean genes, most with unknown function. Therefore, a major research priority is determining the function of these genes, especially those involved in agronomic performance and seed traits. One means to study gene function is through mutagenesis and the study of the resulting phenotypes. Transposon-tagging has been used successfully in both model and crop plants to support studies of gene function. In this report, we describe efforts to generate a transposon-based mutant collection of soybean. The Ds transposon system was used to create activation-tagging, gene and enhancer trap elements. Currently, the repository houses approximately 900 soybean events, with flanking sequence data derived from 200 of these events. Analysis of the insertions revealed approximately 70% disrupted known genes, with the majority matching sequences derived from either Glycine max or Medicago truncatula sequences. Among the mutants generated, one resulted in male-sterility and was shown to disrupt the strictosidine synthase gene. This example clearly demonstrates that it is possible to disrupt soybean gene function by insertional mutagenesis and to derive useful mutants by this approach in spite of the tetraploid nature of the soybean genome.  相似文献   

4.
Plant Cell, Tissue and Organ Culture (PCTOC) - Globular androgenic haploid embryos of TV21 and TV19 cultivars of Camellia ssp., obtained on embryo induction medium (EIM), Murashige and Skoog medium...  相似文献   

5.
6.
Two divergent -tubulin genes (designated S-1 and S-2) were isolated by screening a soybean genomic library with a Chlamydomonas reinhardtii -tubulin cDNA probe. Restriction fragment analysis of the clones recovered, and of soybean genomic DNA, indicated that these represent two unique classes of structurally different -tubulin genes in the soybean genome. However, it is possible that unidentified members of these classes or additional highly divergent classes of -tubulin genes (thus far undetected) exist in the soybean genome. The S-1 and S-2 genomic clones were sequenced, revealing that both are potentially functional genes which would encode -tubulins of 445 and 449 amino acids, respectively. A comparison of their derived amino acid sequences with -tubulins from several organisms showed that they are most homologous to Chlamydomonas -tubulin (85–87%), with lesser degrees of homology to -tubulins of vertebrate species (79–83%), Trypanosoma brucei (80–81%) and Saccharomyces cerevisiae (66–68%). The amino acid sequences of S-1 and S-2 are as divergent from each other as they are from the Chlamydomonas -tubulin. The amino acids at the diverged positions in S-2 are nearly all conservative substitutions while in S-1, 18 of the 69 substitutions were non-conservative. Both soybean -tubulin genes contain two introns in exactly the same positions. The first soybean intron is located in the same position as the third intron of the Chlamydomonas -tubulin genes. Codon usage in the two soybean -tubulins is remarkably similar (D 2=0.87), but differs from codon usage in other soybean genes.  相似文献   

7.
8.
This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L.) Merr) genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark) genotypes, respectively. Total phenolic content varied from 1.15 to 1.77?mg?GAE/g, whereas flavonoids varied from 0.68 to 2.13?mg?QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5), ketones (13), alcohols (5), carboxylic acids (7), esters (13), alkanes (2), heterocyclic compounds (19), phenolic compound (9), sugar moiety (7) ether (4) and amide (3), one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1) had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.  相似文献   

9.
10.
11.
Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS–PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI–TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25–85 °C. Apparent Michaelis constant (Km(app)) for starch was 0.71 mg/mL and turnover number (kcat) was 280 s?1 in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 °C showed first-order kinetics with rate constant (k) equal to 0.0063 min?1. Soybean α-amylase showed high specificity for its primary substrate starch. High similarity of soybean α-amylase with known amylases suggests that this α-amylase belongs to glycosyl hydrolase family 13. Cereal α-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant α-amylase. Soybean can be used as commercially viable source of α-amylase for various industrial applications.  相似文献   

12.
13.
5-Deoxy-5-nucleosideacetic acids II–V are isostructural analogues of nucleotides with a carboxylate group in the place of the 5-phosphate group. We have studied their oligomerization in aqueous solution using a water-soluble carbodiimide as the condensing agent in the presence or absence of an appropriate polynucleotide template. Condensation of adenylic acid analogues IIa, IIIa, and Va in the presence of polyuridylic acid were found to be the most efficient reactions. Cyclization of the activated monomers to lactones and the insolubility of the oligomers in aqueous solution were found to be obstacles to the efficient formation of long oligomers.  相似文献   

14.
Summary -Conglycinin (7S globulin) and glycinin (11S globulin) are the major reserve proteins of soybean. They were localized by the protein A immunogold method in thin sections of glycine max (soybean) cv. Maple Arrow. In cotyledons, both globulins were simultaneously present in all protein bodies. Statistical analysis of marking intensities indicated no correlation between globulin concentration and size of protein bodies. The immunogold method failed to detect either globulin in the embryonic axis and in cotyledons of four-day-old seedlings. Similar observations were made with cotyledons of two soy varieties lacking either the lectin or the Kunitz trypsin inhibitor. In another variety (T-102) lacking the lectin, the 7S globulin could not be detected.  相似文献   

15.
Climate change is predicted to cause continued increases in global temperatures, greater variability in precipitation and in some cases, more frequent insect pest outbreaks. Here we seek to understand how abiotic and biotic stresses associated with climate change can affect plant-herbivore interactions in a model crop species (soybean, Glycine max (L.) Merr.) by answering three questions: (1) Do the combined effects of abiotic and biotic stresses associated with climate change cause synergistic negative effects on plant biomass? (2) Can abiotic stress affect resistance of plants to insect herbivores? (3) Does genetic variation in plant traits modify a plant’s response to stress? We performed three experiments in controlled growth environments using up to 51 soybean genotypes selected to vary in numerous traits associated with drought and resistance against pests (e.g., insect herbivores, nematodes, and pathogenic fungi), and up to 3 generalist-feeding herbivorous noctuid moth species (Helicoverpa zea, Heliothis virescens, and Spodoptera exigua) that commonly feed on soybean in North America. Drought and herbivory had the largest and the most consistent negative effects on plant performance, reducing the above- and below-ground biomass by 10-45 %, whereas increased temperature had little to no effect on plants. Drought also increased susceptibility to generalist noctuid herbivores, but these results varied dramatically in magnitude and direction among plant genotypes. Our experiments show that the effects of abiotic and biotic stress on soybean biomass were largely due to the additive effects of these stresses, and there exists substantial genetic variation in the soybean germplasm pool we studied that could be used as a source of parental stock in breeding new crops that can more effectively tolerate and resist the combined negative effects of insect herbivory and drought.  相似文献   

16.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

17.
C Li  Y-M Zhang 《Heredity》2011,106(4):633-641
There are two main classes of multi-subunit seed storage proteins, glycinin (11S) and β-conglycinin (7S), which account for approximately 70% of the total protein in a typical soybean seed. The subunits of these two protein classes are encoded by a number of genes. The genomic organization of these genes follows a complex evolutionary history. This research was designed to describe the origin and maintenance of genes in each of these gene families by analyzing the synteny, phylogenies, selection pressure and duplications of the genes in each gene family. The ancestral glycinin gene initially experienced a tandem duplication event; then, the genome underwent two subsequent rounds of whole-genome duplication, thereby resulting in duplication of the glycinin genes, and finally a tandem duplication likely gave rise to the Gy1 and Gy2 genes. The β-conglycinin genes primarily originated through the more recent whole-genome duplication and several tandem duplications. Purifying selection has had a key role in the maintenance of genes in both gene families. In addition, positive selection in the glycinin genes and a large deletion in a β-conglycinin exon contribute to the diversity of the duplicate genes. In summary, our results suggest that the duplicated genes in both gene families prefer to retain similar function throughout evolution and therefore may contribute to phenotypic robustness.  相似文献   

18.
19.
20.
Stability and unfolding of mammalian and microbial α-amylases have been intensively investigated. However, there is only limited information available on the structural stability of plant α-amylases, namely of the two isoenzymes from barley AMY1 and AMY2, of the α-amylase from mung bean (Vigna radiata), and of the α-amylase from malted sorghum (Sorghum bicolor). We report here the stability of soyabean α-amylase (GMA), against elevated temperatures and chemical denaturants (GndHCl) by employing circular dichroism and fluorescence spectroscopy. Since it is well-known that calcium ions play a crucial role for enzymatic activity and stability of a-amylases, we performed our studies with calcium bound and calcium free GMA. The thermal unfolding transition temperature decreased from 72°C for calcium saturated samples to 57°C for the case of calcium depleted GMA. Similarly, the GndHCl transition concentration was lowered from 0.70 M for calcium bound GMA to 0.41 M in the absence of calcium. Thermal unfolding of GMA irreversible due to aggregation of the unfolded state. GMA unfolded in 6 M GndHCl shows high degree of reversibility after diluting the unfolded enzyme in native buffer containing 7 M glycerol. Furthermore, the refolded enzyme showed 93% of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号