首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of this study was to test whether chronically enhanced O2 delivery to tissues, without arterial hyperoxia, can change acute ventilatory responses to hypercapnia and hypoxia. The effects of decreased hemoglobin (Hb)-O2 affinity on ventilatory responses during hypercapnia (0, 5, 7, and 9% CO2 in O2) and hypoxia (10 and 15% O2 in N2) were assessed in mutant mice expressing Hb Presbyterian (mutation in the beta-globin gene, beta108 Asn --> Lys). O2 consumption during normoxia, measured via open-circuit methods, was significantly higher in the mutant mice than in wild-type mice. Respiratory measurements were conducted with a whole body, unrestrained, single-chamber plethysmograph under conscious conditions. During hypercapnia, there was no difference between the slopes of the hypercapnic ventilatory responses, whereas minute ventilation at the same levels of arterial PCO2 was lower in the Presbyterian mice than in the wild-type mice. During both hypoxic exposures, ventilatory responses were blunted in the mutant mice compared with responses in the wild-type mice. The effects of brief hyperoxia exposure (100% O2) after 10% hypoxia on ventilation were examined in anesthetized, spontaneously breathing mice with a double-chamber plethysmograph. No significant difference was found in ventilatory responses to brief hypoxia between both groups of mice, indicating possible involvement of central mechanisms in blunted ventilatory responses to hypoxia in Presbyterian mice. We conclude that chronically enhanced O2 delivery to peripheral tissues can reduce ventilation during acute hypercapnic and hypoxic exposures.  相似文献   

3.
Recent studies described the in vivo respiratory phenotype of mutant newborn mice with targeted deletions of genes involved in respiratory control development. Whole-body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. The main characteristics of the early postnatal development of respiratory control in mice are reviewed, including available data on breathing patterns and on hypoxic and hypercapnic ventilatory responses. Mice are very immature at birth, and their instable breathing is similar to that of preterm infants. Breathing pattern abnormalities with prolonged apneas occur in newborn mice that lack genes involved in the development of rhythmogenesis. Some mutant newborn mice have blunted hypoxic and hypercapnic ventilatory responses whereas others exhibit impairments in responses to hypoxia or hypercapnia. Furthermore, combined studies in mutant newborn mice and in humans have helped to provide pathogenic information on genetically determined developmental disorders of respiratory control in humans.  相似文献   

4.
The objective was to determine the effect of moderate changes in ambient temperature (TA) on breathing and body temperature in ponies chronically exposed to a TA of 21 degrees C in the summer and 5 degrees C in the winter. Normal (n = 6) and chronic carotid body-denervated (n = 6, 1-2 yr) ponies were studied during 1) winter months over 3-4 days at 5 (control TA) and 23 degrees C and 2) summer months over 2-4 days at 21 (control TA), 30, and 12 degrees C. Neither rectal nor arterial temperature changed with any alteration of TA (P greater than 0.10). Skin temperature (Tsk) always changed by 2-4 degrees C in the same direction as changes in TA (P less than 0.01), and Tsk was the only variable that differed between summer and winter control TA. While breathing room air 24-48 h after TA was altered, pulmonary ventilation (VE) and breathing frequency (f) were approximately 100 and 300%, respectively, above control with elevated TA and approximately 25-50% below control with reduced TA (P less than 0.01). Changes in f were closely related to changes in Tsk. Tidal volume (VT) changed inversely with changes in TA. Generally, while breathing room air, arterial PCO2 (Paco2) did not change from control during the first 48 h of altered TA. In studies when inspired CO2 was elevated VT increased by the same amount at all TA; f increased at low and control TA but decreased at elevated TA; and VE and Paco2 both increased relatively less at elevated TA, but the VE-Paco2 slope was independent of TA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In this study we sought to determine the effects of background hyperoxia on the ventilatory response to hypercapnia. We addressed this issue by examining the temporal profile of the first minute transients of minute ventilation, and its frequency and tidal components, in response to 5% and 10% CO2 each co-applied with the natural (balanced with air) and hyperoxic (balanced with O2) levels of oxygen. The study was performed on the urethane-anesthetized, tracheostomized, spontaneously breathing mouse, placed in a flow-through body plethysmograph. We identified an early suppressant effect of CO2-in-O2 on breathing frequency. The frequency declined to 88.5 +/-1.4% and 87.8 +/-1.9% relative to the pre-test, baseline level for 5% and 10% CO2, respectively. There was a compensatory rise in tidal volume and no major change in the overall ventilation. In contrast, CO2-in-Air resulted in ventilatory stimulation caused in equal measure by frequency and tidal components. Thus, the inhibitory effect on breathing frequency of the CO2-in-O2 resulted from the O2 content in the mixture and had the temporal characteristics consistent with carotid body function. In conclusion, transient O2-dependent effects can bear on the nascent hypercapnic ventilatory response. The complexity of the O2-CO2 interaction regarding the breathing pattern components should be taken into account while designing the optimal conditions for a hypercapnic test.  相似文献   

6.
7.
The effect of hypercapnic ventilatory response was examined in anaesthetized spontaneously breathing rats by using rebreathing techniques both at supine and -30 degrees head-down tilt positions. No significant differences were found in the minute ventilation response between the supine and head-down positions during hypercapnic stimulations. In contrast, we found that hypercapnia-stimulated breathing affected the relationship between deltaPoes and deltaP(ET), CO2. This study demonstrates that higher peak deltaPoes was developed in order to maintain the same ventilation in the supine and head-tilt position. The higher deltaPoes/deltaP(ET), CO2 head-down ratio than the supine was a result of increased airflow impedance of the total respiratory system while head-down. It is concluded that ventilation at head-down is regulated in such a way as to maintain the pH and Paco, despite mechanical loading imposed by the environment. Hence, during hypercapnic stimulation the ventilatory response in head-down position is shaped by interaction of chemical drives and mechanical afferent information arising.  相似文献   

8.
9.
To determine whether changes in partial pressure of CO2 participate in mechanism enlarging the lung functional residual capacity (FRC) during chronic hypoxia, we measured FRC and ventilation in rats exposed either to poikilocapnic (group H, F(I)O2 0.1, F(I)CO2 <0.01) or hypercapnic (group H+CO2, F(I)O2 0.1, F(I)CO2 0.04-0.05) hypoxia for the three weeks and in the controls (group C) breathing air. At the end of exposure a body plethysmograph was used to measure ventilatory parameters (V'(E), f(R), V(T)) and FRC during air breathing and acute hypoxia (10 % O2 in N2). The exposure to hypoxia for three weeks increased FRC measured during air breathing in both experimental groups (H: 3.0+/-0.1 ml, H+CO2: 3.1+/-0.2 ml, C: 1.8+/-0.2 ml). During the following acute hypoxia, we observed a significant increase of FRC in the controls (3.2+/-0.2 ml) and in both experimental groups (H: 3.5+/-0.2 ml, H+CO2: 3.6+/-0.2 ml). Because chronic hypoxia combined with chronic hypercapnia and chronic poikilocapnic hypoxia induced the same increase of FRC, we conclude that hypercapnia did not participate in the FRC enlargement during chronic hypoxia.  相似文献   

10.
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To assess the range of functional responses of the ventilatory apparatus of developing rats and the degree to which ventilatory function is developed in advance of other functional characteristics, rat pups at five ages (between 4 and 20 days old) were exposed to temperatures of 28, 32 and 36 degrees C while in a flow through metabolic chamber modified to serve as a whole body plethysmograph. Ventilatory frequency, tidal volume and oxygen extraction 'efficiency' (EO2 = VO2/FEO2 x VI) were measured at each age and temperature. Mean breathing frequency at 4 days old was 2.56 breaths per second, decreasing to 1.99 at 20 days old. There was insignificant modification of breathing frequency with temperature. Four day old rat pups at 28 degrees C had mass specific tidal volumes of 0.017 ml/g, 142% of the value at 36 degrees C (0.012 ml/g). Twenty day old pups at 28 degrees C had mass specific tidal volumes of 0.027 ml/g, also 142% of the thermoneutral value (0.019 ml/g at 32 degrees C). At all ages, increases in tidal volumes were similar and increases in tidal volume were the only response to increased metabolic demand. Oxygen extraction 'efficiency' was about half that previously observed in adult rodents. These observations of ventilation during a cold challenge suggest that although structural development is not complete until much later, functional development is sufficient, either at birth or shortly thereafter.  相似文献   

12.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Resting non-hibernating echidnas are characterised by low metabolic rates, but also have a very low respiratory frequency and a variable respiratory minute volume, often resulting in low levels of arterial O(2) and high CO(2). As the echidna lies at one physiological extreme among the hibernators, in terms of its large size and low metabolism and ventilatory requirement when not hibernating, a study of control of breathing during hibernation in echidnas should provide a useful test of the generality of various models. We used non-invasive techniques to study breathing patterns and the control of ventilation in 6 echidnas. Hibernating echidnas (T(b) range 7-10 degrees C) showed episodic breathing with bursts of breaths (average 36+/-16 breaths in 24+/-5 min) followed by a period of apnea (76+/-17 min) then a series (8+/-4) of slow breaths at 14+/-1 min intervals leading up to the next burst. Increasing CO(2) levels in the inspired air increased the number of breaths in a burst, eventually leading to continuous breathing. Inter burst breaths were controlled by O(2): hypoxia increased inter burst breaths, and decreased burst length, while hyperoxia abolished inter burst breaths and increased the apneic period. Overall, while CO(2) was a strong respiratory stimulus in hibernating echidnas, O(2) had little effect on total ventilation, but did have a strong effect on the breathing pattern.  相似文献   

14.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

15.
Previous retrospective studies report a core body temperature cooling rate of 3 degrees C/h during avalanche burial. Hypercapnia occurs during avalanche burial secondary to rebreathing expired air, and the effect of hypercapnia on hypothermia during avalanche burial is unknown. The objective of this study was to determine the core temperature cooling rate during snow burial under normocapnic and hypercapnic conditions. We measured rectal core body temperature (T(re)) in 12 subjects buried in compacted snow dressed in a lightweight clothing insulation system during two different study burials. In one burial, subjects breathed with a device (AvaLung 2, Black Diamond Equipment) that resulted in hypercapnia over 30-60 min. In a control burial, subjects were buried under identical conditions with a modified breathing device that maintained normocapnia. Mean snow temperature was -2.5 +/- 2.0 degrees C. Burial time was 49 +/- 14 min in the hypercapnic study and 60 min in the normocapnic study (P = 0.02). Rate of decrease in T(re) was greater with hypercapnia (1.2 degrees C/h by multiple regression analysis, 95% confidence limits of 1.1-1.3 degrees C/h) than with normocapnia (0.7 degrees C/h, 95% confidence limit of 0.6-0.8 degrees C/h). In the hypercapnic study, the fraction of inspired carbon dioxide increased from 1.4 +/- 1.0 to 7.0 +/- 1.4%, minute ventilation increased from 15 +/- 7 to 40 +/- 12 l/min, and oxygen saturation decreased from 97 +/- 1 to 90 +/- 6% (P < 0.01). During the normocapnic study, these parameters remained unchanged. In this study, T(re) cooling rate during snow burial was less than previously reported and was increased by hypercapnia. This may have important implications for prehospital treatment of avalanche burial victims.  相似文献   

16.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

17.
Five healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with a discontinuous inspiratory elastic load (IEL) of approximately 10 cmH2O/l. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE-VCO2) relationship in NL and IEL. Compared with NL, the VE-VCO2 slope was depressed by IEL, more so in hypercapnic [-28.7 +/- 7.2 (SE) %] than in eucapnic exercise (-16.0 +/- 2.8%). The steady-state hypercapnic ventilatory response at rest was also markedly depressed (-32.1 +/- 11.2%). Occlusion pressure response was augmented in response to IEL during eucapnic exercise (88.7 +/- 13.3%) but not during CO2 inhalation at rest or during exercise. Breathing pattern characteristics were similar regardless of the type of stimulus input and the level of inspiratory load. Results are consistent with the notion that the control of VE and breathing pattern may both be influenced by a balance between the prevailing chemical drive and a propensity of the controller to reduce respiratory effort.  相似文献   

18.
Leptin deficiency in ob/ob mice produces marked depression of the hypercapnic ventilatory response, particularly during sleep. We now extend our previous findings to determine whether 1) leptin deficiency affects the hypoxic ventilatory response and 2) blockade of the downstream excitatory actions of leptin on melanocortin 4 receptors or inhibitory actions on neuropeptide Y (NPY) pathways has an impact on hypercapnic and hypoxic sensitivity. We have found that leptin-deficient ob/ob mice have the same hypoxic ventilatory response as weight-matched wild-type obese mice. There were no differences in the hypoxic sensitivity between agouti yellow mice and weight-matched controls, or NPY-deficient mice and wild-type littermates. Agouti yellow mice, with blocked melanocortin pathways, exhibited a significant depression of the hypercapnic sensitivity compared with weight-matched wild-type controls during non-rapid eye movement sleep (5.8 +/- 0.7 vs. 8.9 +/- 0.7 ml x min(-1) x %CO(2)(-1), P < 0.01), but not during wakefulness. NPY-deficient transgenic mice exhibited a small increase in the hypercapnic ventilatory response compared with wild-type littermates, but this was only present during wakefulness. We conclude that interruption of leptin pathways does not affect hypoxic sensitivity during sleep and wakefulness but that melanocortin 4 blockade is associated with depressed hypercapnic sensitivity in non-rapid eye movement sleep.  相似文献   

19.
Body temperature (T(b)) of rat pups (7-9 days old) raised under a 12:12-h light-dark (L-D) regimen (L: 0700-1900, D: 1900-0700) was consistently higher in D than in L by approximately 1.1 degrees C. We tested the hypothesis that the L-D differences in T(b) were accompanied by differences in the set point of thermoregulation. Measurements were performed on rat pups at 7-9 days after birth. O(2) consumption (VO(2)) and CO(2) production (VCO(2)) were measured with an open-flow method during air breathing, as ambient temperature (T(a)) was decreased from 40 to 15 degrees C at the constant rate of 0.5 degrees C/min. At T(a) >/=33 degrees C, VO(2) was not significantly different between L and D, whereas VCO(2) was higher in L, suggesting a greater ventilation. Over the 33 to 15 degrees C range the VO(2) values in D exceeded those in L by approximately 30%. Specifically, the difference was contributed by differences in thermogenesis at T(a) = 30 to 20 degrees C. As T(a) was decreased, the critical temperature at which VO(2) began to rise was lower in L. We conclude that the higher T(b) of rat pups in D is accompanied by a higher set point for thermoregulation and a greater thermogenesis. These results are consistent with the idea that, in newborns, endogenous changes in the set point of thermoregulation contribute to the circadian oscillations of T(b).  相似文献   

20.
Glia are thought to regulate ion homeostasis, including extracellular pH; however, their role in modulating central CO2 chemosensitivity is unclear. Using a push-pull cannula in chronically instrumented and conscious rats, we administered a glial toxin, fluorocitrate (FC; 1 mM) into the retrotrapezoid nucleus (RTN), a putative chemosensitive site, during normocapnia and hypercapnia. FC exposure significantly increased expired minute ventilation (VE) to a value 38% above the control level during normocapnia. During hypercapnia, FC also significantly increased both breathing frequency and expired VE. During FC administration, maximal ventilation was achieved at approximately 4% CO2, compared with 8-10% CO2 during control hypercapnic trials. RTN perfusion of control solutions had little effect on any ventilatory measures (VE, tidal volume, or breathing frequency) during normocapnic or hypercapnic conditions. We conclude that unilateral impairment of glial function in the RTN of the conscious rat results in stimulation of respiratory output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号