首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interactions among physiological mechanisms are abundant in biomedical signals, and they may exist to maintain efficient homeostasis. For example, sympathetic and parasympathetic neural activities interact to either elevate or depress the heart rate to maintain homeostasis. There has been considerable effort devoted to developing algorithms that can detect interactions between various physiological mechanisms. However, methods used to detect the presence of interactions between the sympathetic and parasympathetic nervous systems, to take one example, have had limited success. This may be because interactions in physiological systems are non-linear and non-stationary. The goal of this work was to identify non-linear interactions between the sympathetic and parasympathetic nervous systems in the form of frequency and amplitude modulations in human heart-rate data (n=6). To this end, wavelet analysis was performed, followed by frequency analysis of the resultant wavelet decomposed signals in several frequency brackets we define as: very low frequency (f<0.04 Hz), low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz). Our analysis suggests that the high-frequency bracket is modulated by the low-frequency bracket in the heart rate data obtained in both upright and sitting positions. However, there was no evidence of amplitude modulation among these frequencies.  相似文献   

2.
Healthy subjects under rhythmic breathing have heart interbeat intervals with a respiratory band in the frequency domain that can be an index of vagal activity. Diabetes Mellitus Type II (DM) affects the autonomic nervous system of patients, thus it can be expected changes on the vagal activity. Here, the influence of DM on the breathing modulation of the heart rate is evaluated by analyzing in the frequency domain heart interbeat interval (IBI) records obtained from 30 recently diagnosed, 15 long standing DM patients, and 30 control subjects during standardized clinical tests of controlled breathing at 0.1 Hz, supine rest and standing upright. Fourier spectral analysis of IBI records quantifies heart rate variability in different regions: low-frequencies (LF, 0.04–0.15 Hz), high-frequencies (HF, 0.15–0.4 Hz), and a controlled breathing peak (RP, centered around 0.1 Hz). Two new parameters are introduced: the frequency radius rf (square root of the sum of LF and HF squared) and β (power of RP divided by the sum of LF and HF). As diabetes evolves, the controlled breathing peak loses power and shifts to smaller frequencies, indicating that heart rate modulation is slower in diabetic patients than in controls. In contrast to the traditional parameters LF, HF and LF/HF, which do not show significant differences between the three populations in neither of the clinical tests, the new parameters rf and β, distinguish between control and diabetic subjects in the case of controlled breathing. Sympathetic activity that is driven by the baroreceptor reflex associated with the 0.1 Hz breathing modulations is affected in DM patients. Diabetes produces not only a rigid heartbeat with less autonomic induced variability (rf diminishes), but also alters the coupling between breathing and heart rate (reduced β), due to a progressive decline of vagal and sympathetic activity.  相似文献   

3.
The variation in instantaneous heart rate is most prominent in infants and younger subjects. In a preliminary study of the effects of maturation on heart rate, we compared the heart rate variations of 29 children and young adults in three groups between 5 and 24 years of age. We used spectral analysis to determine the intensity of the variations in each of the two main frequency bands in which variations occur: HF, 0.15-0.45 Hz, and LF, 0.03-0.15 Hz. Three-minute segments of continuous instantaneous heart rate were recorded for each subject in standing and supine positions. The group mean LF and HF amplitudes and the L/H ratio decreased between 5 and 10 years of age in both positions, significantly for LF and L/H in the supine position (p less than 0.05). Half of the youngest group of children had adult LF amplitude values by 5 years of age; the others had much higher levels, indicating increased low frequency variation at this age. Thus the high variation in heart rate in very young subjects is most prominent in the LF range. These preliminary results, considered with previous pharmacological studies, suggest that many children have a significant decrease in sympathetic activity between 5 and 10 years of age and possibly a slight decrease in parasympathetic activity. Spectral analysis of heart rate appears a promising technique for investigating the development of neural control of the heart.  相似文献   

4.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00-15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15-0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04-0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30-06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00-15:00) could enhance parasympathetic activity around midnight.  相似文献   

5.
A spectral analysis of heart rate was carried out on 11 young female adults in order to evaluate the effects of bright light exposure on autonomic nervous activity. Bright light (5,000 lx) was provided by fluorescent lamps during the daytime (07:00–15:00) on day 1. Dim light (200 lx) was given on day 2. High frequency components (HF: 0.15–0.4Hz) were used as a marker of parasympathetic activity and the ratio of low frequency (LF: 0.04–0.15 HZ) to high frequency (LF/HF) as an indicator of sympathetic activity. The average value during the sleep period (23:30–06:30) was compared following diurnal exposure to bright or dim light. HF component was significantly greater from 23:30 to 02:00 after diurnal exposure of bright light, being accompanied by lower heart rate during these periods. There existed negative correlation between heart rate and HF component from 23:30 to 02:00 under diurnal exposure to bright and dim lights. The results indicate that bright light exposure during the daytime (07:00–15:00) could enhance parasympathetic activity around midnight.  相似文献   

6.
Autonomic dysfunction in chronic emotional stress is well documented. The aim of this study was to analyze the effects of natural antioxidant vitamin E (aekol). Twenty persons (16 women and 4 men, mean age 38 +/- 4 years) who reported recent occurrence of emotional stress were examined before and after a 4-week treatment with aekol (5 ml twice a day). Heart rate variability (taking into account very low-frequency (VLF, 0.003-0.04 Hz), low-frequency (LF, 0.04-0.15 Hz), and high-frequency (HF, 0.15-0.40 Hz) components) was computed from the power spectra (5-min epochs) of the EKG recorded in the patients in supine position. After the treatment, the HF power of the heart rate variability (an index of cardiac parasympathetic activity) increased (p < 0.05), whereas the VLF power (an index of the cerebral sympathetic activity) decreased (p < 0.01). The decrease in the VLF was accompanied by a reduction of anxiety level (p < 0.01). According to our hypothesis, the absolute and relative power of the VLF can be used as an index of anxiety or cerebral sympathetic activity, which significantly decreases after the aekol treatment.  相似文献   

7.
Previous work from our laboratory using heart rate variability (HRV) has demonstrated that women before menopause have a more dominant parasympathetic and less effective sympathetic regulations of heart rate compared with men. Because it is still not clear whether normal or preeclamptic pregnancy coincides with alternations in the autonomic functions, we evaluated the changes of HRV in 17 nonpregnant, 17 normotensive pregnant, and 11 preeclamptic women who were clinically diagnosed without history of diabetic neuropathy, cardiac arrhythmia, and other cardiovascular diseases. Frequency-domain analysis of short-term, stationary R-R intervals was performed to evaluate the total variance, low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), ratio of LF to HF (LF/HF), and LF in normalized units (LF%). Natural logarithm transformation was applied to variance, LF, HF, and LF/HF for the adjustment of the skewness of distribution. We found that the normal pregnant group had a lower R-R value and HF but had a higher LF/HF and LF% compared with the nonpregnant group. The preeclamptic group had lower HF but higher LF/HF compared with either the normal pregnant or nonpregnant group. Our results suggest that normal pregnancy is associated with a facilitation of sympathetic regulation and an attenuation of parasympathetic influence of heart rate, and such alterations are enhanced in preeclamptic pregnancy.  相似文献   

8.
Cardiovascular autonomic modulation during 36 h of total sleep deprivation (SD) was assessed in 18 normal subjects (16 men, 2 women, 26.0 +/- 4.6 yr old). ECG and continuous blood pressure (BP) from radial artery tonometry were obtained at 2100 on the first study night (baseline) and every subsequent 12 h of SD. Each measurement period included resting supine, seated, and seated performing computerized tasks and measured vigilance and executive function. Subjects were not supine in the periods between measurements. Spectral analysis of heart rate variability (HRV) and BP variability (BPV) was computed for cardiac parasympathetic modulation [high-frequency power (HF)], sympathetic modulation [low-frequency power (LF)], sympathovagal balance (LF/HF power of R-R variability), and BPV sympathetic modulation (at LF). All spectral data were expressed in normalized units [(total power of the components/total power-very LF) x 100]. Spontaneous baroreflex sensitivity (BRS), based on systolic BP and pulse interval powers, was also measured. Supine and sitting, BPV LF was significantly increased from baseline at 12, 24, and 36 h of SD. Sitting, HRV LF was increased at 12 and 24 h of SD, HRV HF was decreased at 12 h SD, and HRV LF/HF power of R-R variability was increased at 12 h of SD. BRS was decreased at 24 h of SD supine and seated. During the simple reaction time task (vigilance testing), the significantly increased sympathetic and decreased parasympathetic cardiac modulation and BRS extended through 36 h of SD. In summary, acute SD was associated with increased sympathetic and decreased parasympathetic cardiovascular modulation and decreased BRS, most consistently in the seated position and during simple reaction-time testing.  相似文献   

9.
The effects of acoustic and visual stimuli and their synergistic effects on heart rate variability including gender differences were investigated. Of particular interest was the influence of visual stimulus on heart rate variability during listening to simple sounds of different characters. Twelve male and 12 female university students were selected as subjects. The subjects listened at rest to 7 different figures of sound at loudness levels averaging 60 dB. Beat-to-beat R-R intervals were continuously recorded under the closed-eye condition (CEC) and the open-eye condition (OEC) prior to, during, and immediately after the exposure to acoustic stimuli. Low frequency (LF) power was defined over 0.04-0.15 Hz and high frequency (HF) power over 0.15-0.40 Hz. Cardiac autonomic function was estimated by plotting LF/HF in standard measure against HF in standard measure and by plotting LF/HF (%) against HF (%), accompanied by a demarcated central area. Values of LF/HF tended to be smaller under CEC than under OEC. Values of HF while listening to a 110 Hz sine wave under CEC were significantly greater than values for 880 Hz and 3520 Hz sine waves, or for 110 Hz or 880 Hz sawtooth waves, under OEC. Under CEC, values of HF for 7 figures of sound were greater in females than in males. The value of HF of sine wave for 110 Hz under CEC and OEC was significantly greater than that for white noise under the OEC. The results suggest that the cardiac parasympathetic nervous activity during auditory excitation increases with elimination of visual stimuli and tends to be greater in females than in males.  相似文献   

10.
The ratio between low-frequency (LF) and high-frequency (HF) spectral power of heart rate has been used as an approximate index for determining the autonomic nervous system (ANS) balance. An accurate assessment of the ANS balance can only be achieved if clear separation of the dynamics of the sympathetic and parasympathetic nervous activities can be obtained, which is a daunting task because they are nonlinear and have overlapping dynamics. In this study, a promising nonlinear method, termed the principal dynamic mode (PDM) method, is used to separate dynamic components of the sympathetic and parasympathetic nervous activities on the basis of ECG signal, and the results are compared with the power spectral approach to assessing the ANS balance. The PDM analysis based on the 28 subjects consistently resulted in a clear separation of the two nervous systems, which have similar frequency characteristics for parasympathetic and sympathetic activities as those reported in the literature. With the application of atropine, in 13 of 15 supine subjects there was an increase in the sympathetic-to-parasympathetic ratio (SPR) due to a greater decrease of parasympathetic than sympathetic activity (P=0.003), and all 13 subjects in the upright position had a decrease in SPR due to a greater decrease of sympathetic than parasympathetic activity (P<0.001) with the application of propranolol. The LF-to-HF ratio calculated by the power spectral density is less accurate than the PDM because it is not able to separate the dynamics of the parasympathetic and sympathetic nervous systems. The culprit is equivalent decreases in both the sympathetic and parasympathetic activities irrespective of the pharmacological blockades. These findings suggest that the PDM shows promise as a noninvasive and quantitative marker of ANS imbalance, which has been shown to be a factor in many cardiac and stress-related diseases.  相似文献   

11.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

12.
This study was designed to validate the measures of heart period variability for assessing of autonomic nervous system control in calves. Eight calves received an injection of either 0.5 mg/kg atenolol (sympathetic tone blockade), 0.2 mg/kg atropine sulfate (parasympathetic tone blockade), 0.5 mg/kg atenolol + 0.2 mg/kg atropine sulfate (double autonomic blockade) or saline. In the time-domain, we calculated the mean instantaneous heart rate (HR), mean of RR intervals (MeanRR), standard deviation of RR intervals (SDRR) and that of the difference between adjacent intervals (RMSSD). In the frequency-domain, the power of the spectral band 0-1 Hz (TPW), the power of the 0-0.15 Hz band (LF), that of the 0.15-1 Hz band (HF), and the LF/HF ratio were considered. The net vago-sympathetic effect (VSE) was calculated as the ratio of MeanRR in a defined situation to MeanRR during the double blockade. Atenolol injection had no effect on cardiac activity, whereas atropine induced large modifications which were moderated when atenolol was administered at the same time. VSE, HR, MeanRR and RMSSD were found to be valid indicators of the parasympathetic tone of calves because of large variations due to the drug and low individual variations. No measure reflected the sympathetic tone.  相似文献   

13.
Obesity in humans has been associated with altered autonomic nervous system activity. The objective of this study was to examine the relationship between autonomic function and body fat distribution in 16 obese, postmenopausal women using power spectrum analysis of heart rate variability. Using this technique, a low frequency peak (0.04-0.12 Hz) reflecting mixed sympathetic and parasympathetic activity, and a high frequency peak (0.22-0.28 Hz) reflecting parasympathetic activity, were identified from 5-minute consecutive heart rate data (both supine and standing). Autonomic activity in upper body (UBO) vs. lower body obesity (LBO)(by waist-to-hip ratio) and subcutaneous vs. visceral obesity (by CT scan) was evaluated. Power spectrum data were log transformed to normalize the data. The results showed that standing, low-frequency power (reflecting sympathetic activity) and supine, high-frequency power (reflecting parasympathetic activity) were significantly greater in UBO than in LBO, and in visceral compared to subcutaneous obesity. Women with combined UBO and visceral obesity had significantly higher cardiac sympathetic and parasympathetic activity than any other subgroup. We conclude that cardiac autonomic function as assessed by heart rate spectral analysis varies in women depending on their regional body fat distribution.  相似文献   

14.
Our previous studies demonstrated that premenopausal women have dominant vagal and subordinate sympathetic activity compared with age-matched men. This study was designed to investigate the role of estrogen in gender-related autonomic differences. We evaluated the heart rate variability of four healthy groups: age-matched postmenopausal women without hormone replacement therapy (PM), postmenopausal women on conjugated estrogen replacement therapy (PME), men, and non-age-matched premenopausal women (PreM). Frequency-domain analysis of short-term and stationary R-R intervals was performed to evaluate low-frequency power (LF; 0.04-0.15 Hz), high-frequency power (HF; 0.15-0.40 Hz), the ratio of LF to HF (LF/HF), and LF in normalized units (LF%). No gender-related autonomic differences existed between the PM and men groups, but they did exist between the PME and men group. Compared with the PreM group, the PM group had a lower HF and higher LF% and LF/HF. Compared with the PM group, the PME group had a higher HF but lower LF% and LF/HF. These results suggest that conjugated estrogen replacement therapy may facilitate vagal and attenuate sympathetic regulation of heart rate in postmenopausal women. In addition, estrogen may play an important role in gender-related autonomic differences.  相似文献   

15.
《Chronobiology international》2013,30(8):1609-1628
Heart-rate variability patterns of 18 women during a 40-h constant routine of prolonged wakefulness under controlled laboratory conditions were analyzed. The authors tested the circadian timing of the autonomic nervous system and the relationship between the sympathetic and vagal branches in women with both a functional disorder of vascular regulation (main symptom: cold hands and feet) and prolonged sleep onset and controls without these symptoms. Spectral analysis of R-R intervals during paced breathing episodes revealed significantly lower power values in the high-frequency band (HF; 0.15–0.4?Hz) but not in the low-frequency band (LF; 0.04–0.15?Hz), leading to a significantly elevated LF/HF ratio in the former group. A significant circadian rhythm in LF power and heart rate occurred in both groups, and a significant correlation was found between sleepiness and sympathovagal balance (r?=?.53, p?<?.05). These findings indicate not only an autonomic imbalance in the first group compared with controls, but also two strategies of the autonomic nervous system to fight against fatigue in women. One implies circadian control and the other homeostatic control, and both are reflected by the LF/HF ratio. (Author correspondence: )  相似文献   

16.
The purpose of the present study was to determine the fluctuation in cardiovascular reactivity to mental stress during the menstrual cycle by comparing heart rate variability (HRV), and other physiological and psychological data in females with those in males. Cardiovascular reactivity to two mental tasks was measured in 14 females during the follicular and luteal phase of menstruation over two menstrual cycles. The same tasks were subsequently given to a matched pair of males (N=14), at the same intervals as their corresponding females. Heart rate, blood pressure and HRV were used as indices of cardiovascular reactivity. Subjective mental workload was measured at the end of each task. Power spectral analysis of HRV showed that the high frequency (HF) component in HRV decreased more during the luteal phase than the follicular phase. The low frequency (LF) component in HRV and the LF/HF ratio in the luteal phase were significantly higher than that in the follicular phase. The LF component and the LF/HF ratio were significantly lower in females than in males; conversely, the HF component was significantly higher in females than in males. Neither significant effects of menstrual cycle, gender and mental stress nor any significant interactions were found for mental workload. These findings indicate that sympathetic nervous activity in the luteal phase is significantly greater than in the follicular phase whereas parasympathetic nervous activity is predominant in the follicular phase. The results also suggest that predominance of sympathetic nervous activity in males compared with a dominant parasympathetic nervous activity in females.  相似文献   

17.
BACKGROUND AND PURPOSES: The purpose of the study was to document diurnal variation of autonomic nervous functions by use of power spectral analysis of heart rate (HR) variability. METHODS: To clarify characteristics of power spectral analysis of HR variability, electrocardiogram (ECG), blood pressure (BP), and respiratory (Resp) waveform simultaneously were recorded. RESULTS: Two major spectral components were examined at low (LF)- and high (HF)-frequency bands for HR variability. Coherence between HR and Resp variabilities and HR and BP variabilities was maximal at approximately 0.14 and 0.03 Hz, respectively. On the basis of these data, two frequency bands of interest--LF (0.01 to 0.07 Hz) and HF (0.07 to 1.0 Hz)--were defined. Autonomic blockade studies indicated that the parasympathetic system mediated the HF and LF components, whereas the sympathetic system mediated only the LF component; HR had a diurnal pattern. The LF and HF bands in the dark phase tended to be higher than those in the light phase. The LF-to-HF ratio had a diurnal pattern similar to that of the HR. CONCLUSION: Parasympathetic nervous activity in miniature swine may be predominant in the dark phase. The characteristics of power spectra and diurnal variations of autonomic nervous functions are almost the same as those of humans. Therefore, miniature swine may be a useful animal model for future biobehavioral and pharmacotoxicologic studies.  相似文献   

18.
The amplitude of low-frequency (LF) oscillations of heart rate (HR) usually reflects the magnitude of sympathetic activity, but during some conditions, e.g., physical exercise, high sympathetic activity results in a paradoxical decrease of LF oscillations of HR. We tested the hypothesis that this phenomenon may result from a feedback inhibition of sympathetic outflow caused by circulating norepinephrine (NE). A physiological dose of NE (100 ng.kg(-1).min(-1)) was infused into eight healthy subjects, and infusion was continued after alpha-adrenergic blockade [with phentolamine (Phe)]. Muscle sympathetic nervous activity (MSNA) from the peroneal nerve, LF (0.04-0.15 Hz) and high frequency (HF; 0.15-0.40 Hz) spectral components of HR variability, and systolic blood pressure variability were analyzed at baseline, during NE infusion, and during NE infusion after Phe administration. The NE infusion increased the mean blood pressure and decreased the average HR (P < 0.01 for both). MSNA (10 +/- 2 vs. 2 +/- 1 bursts/min, P < 0.01), LF oscillations of HR (43 +/- 13 vs. 35 +/- 13 normalized units, P < 0.05), and systolic blood pressure (3.1 +/- 2.3 vs. 2.0 +/- 1.1 mmHg2, P < 0.05) decreased significantly during the NE infusion. During the NE infusion after PHE, average HR and mean blood pressure returned to baseline levels. However, MSNA (4 +/- 2 bursts/min), LF power of HR (33 +/- 9 normalized units), and systolic blood pressure variability (1.7 +/- 1.1 mmHg2) remained significantly (P < 0.05 for all) below baseline values. Baroreflex gain did not change significantly during the interventions. Elevated levels of circulating NE cause a feedback inhibition on sympathetic outflow in healthy subjects. These inhibitory effects do not seem to be mediated by pressor effects on the baroreflex loop but perhaps by a presynaptic autoregulatory feedback mechanism or some other mechanism that is not prevented by a nonselective alpha-adrenergic blockade.  相似文献   

19.

Introduction

Indexes derived from spontaneous heart period (HP) and systolic arterial pressure (SAP) fluctuations can detect autonomic dysfunction in individuals with type 2 diabetes mellitus (DM) associated to cardiovascular autonomic neuropathy (CAN) or other neuropathies. It is unknown whether HP and SAP variability indexes are sensitive enough to detect the autonomic dysfunction in DM patients without CAN and other neuropathies.

Methods

We evaluated 68 males aged between 40 and 65 years. The group was composed by DM type 2 DM with no manifest neuropathy (n = 34) and healthy (H) subjects (n = 34). The protocol consisted of 15 minutes of recording of HP and SAP variabilities at rest in supine position (REST) and after active standing (STAND). The HP power in the high frequency band (HF, from 0.15 to 0.5 Hz), the SAP power in the low frequency band (LF, from 0.04 to 0.15 Hz) and BRS estimated via spectral approach and sequence method were computed.

Results

The HF power of HP was lower in DM patients than in H subjects, while the two groups exhibited comparable HF power of HP during STAND. The LF power of SAP was similar in DM and H groups at REST and increased during STAND in both groups. BRSs estimated in the HF band and via baroreflex sequence method were lower in DM than in H and they decreased further during STAND in both populations.

Conclusion

Results suggest that vagal control of heart rate and cardiac baroreflex control was impaired in type 2 DM, while sympathetic control directed to vessels, sympathetic and baroreflex response to STAND were preserved. Cardiovascular variability indexes are sensitive enough to typify the early, peculiar signs of autonomic dysfunction in type-2 DM patients well before CAN becomes manifest.  相似文献   

20.
We assessed the sympatho-vagal activities of the heart after administration of capsaicin by measuring the power spectral analysis in rats. There were major two frequency components of heart rate variability, which we defined as high (1.0 Hz <, HF) and low (LF, < 1.0 Hz) frequency components. Vagal blockade by atropine abolished the high frequency component, and lowered the amplitude of the low frequency component. On the other hand, under conditions of sympathetic blockade by propranolol, the low frequency component was reduced. Combined vagal and sympathetic blockade abolished all heart rate fluctuations. We analyzed the low and high frequency components by integrating the spectrum for the respective band width. The rats administered capsaicin had a higher heart rate and sympathetic nervous system index (LF/HF) than the control group of rats. These results suggest that power spectral analysis is an effective and noninvasive method for detecting subtle changes in autonomic activity in response to the intake of foods or drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号