共查询到20条相似文献,搜索用时 15 毫秒
1.
Hermanowski-Vosatka A Gerhold D Mundt SS Loving VA Lu M Chen Y Elbrecht A Wu M Doebber T Kelly L Milot D Guo Q Wang PR Ippolito M Chao YS Wright SD Thieringer R 《Biochemical and biophysical research communications》2000,279(2):330-336
11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is an enzyme that converts cortisone to the active glucocorticoid, cortisol. Cortisol-cortisone interconversion plays a key role in the regulation of glucose metabolism, since mice deficient in 11betaHSD1 are resistant to diet-induced hyperglycemia. Peroxisome proliferator activator receptors (PPAR) are key regulators of glucose and lipid homeostasis. We observed a striking downregulation of murine hepatic 11betaHSD1 expression and activity after chronic treatment of wild-type mice with PPARalpha agonists, while 11betaHSD1 in the livers of PPARalpha knockout mice, or in mice treated for only 7 h with PPARalpha agonists, was unaltered. Our results are the first to show PPARalpha agonists can affect glucocorticoid metabolism in the liver by altering 11betaHSD1 expression after chronic treatment. Regulation of active glucocorticoid levels in the liver by PPARalpha agonists may in turn affect glucose metabolism, consistent with reports of their antidiabetic effects. 相似文献
2.
17beta-hydroxysteroid dehydrogenase type 11 is a major peroxisome proliferator-activated receptor alpha-regulated gene in mouse intestine. 总被引:1,自引:0,他引:1
Kiyoto Motojima 《European journal of biochemistry》2004,271(20):4141-4146
In order to study the role of peroxisome proliferator-activated receptor alpha in mouse intestine, its agonist-induced proteins were identified by peptide mass fingerprinting followed by Northern blot analysis using their cDNAs. One of the most remarkably induced proteins was identified as 17beta-hydroxysterol dehydrogenase type 11. Its very rapid induction by various agonists was most efficient in intestine and then in liver. These findings together with recently reported results showing the enzyme family's wide substrate spectrum, including not only glucocorticoids and sex steroids but also bile acids, fatty acids and branched chain amino acids, suggest new roles for both peroxisome proliferator-activated receptor alpha and 17beta-hydroxysterol dehydrogenase type 11 in lipid metabolism and/or detoxification in the intestine. 相似文献
3.
4.
Characterization and localization of human type10 17beta-hydroxysteroid dehydrogenase. 总被引:2,自引:0,他引:2
X Y He G Merz Y Z Yang P Mehta H Schulz S Y Yang 《European journal of biochemistry》2001,268(18):4899-4907
The tissue distribution, subcellular localization, and metabolic functions of human 17beta-hydroxysteroid dehydrogenase type 10/short chain L-3-hydroxyacyl-CoA dehydrogenase have been investigated. Human liver and gonads are abundant in this enzyme, but it is present in only negligible amounts in skeletal muscle. Its N-terminal sequence is a mitochondrial targeting sequence, but is not required for directing this protein to mitochondria. Immunocytochemical studies demonstrate that this protein, which has been referred to as ER-associated amyloid beta-binding protein (ERAB), is not detectable in the ER of normal tissues. We have established that protocols employed to investigate the subcellular distribution of ERAB yield ER fractions rich in mitochondria. Mitochondria-associated membrane fractions believed to be ER fractions were employed in ERAB/Abeta-binding alcohol dehydrogenase studies. The present studies establish that in normal tissues this protein is located in mitochondria. This feature distinguishes it from all known 17beta-hydroxysteroid dehydrogenases, and endows mitochondria with the capability of modulating intracellular levels of the active forms of sex steroids. 相似文献
5.
6.
G Pelletier V Luu-The B Têtu F Labrie 《The journal of histochemistry and cytochemistry》1999,47(6):731-738
17beta-hydroxysteroid dehydrogenase (17beta-HSD) controls the last step in the formation of all androgens and all estrogens. At least six 17beta-HSD isoenzymes have been identified. The recently cloned Type 5 17beta-HSD transforms 4-dione into testosterone. To gain a better understanding of the role of this enzyme in reproductive tissues, we immunocytochemically localized the enzyme in human male and female reproductive organs. In the ovary of adult premenopausal women (25-40 years of age), immunostaining was found in corpus luteum cells. In the uterus, staining was detected only in the epithelial cells of the endometrium. Immunolabeling was also detected in the mammary gland, a positive reaction being detected in epithelial cells of acini and intralobular ducts as well as in the surrounding stromal cells. In the testis, strong staining was seen in the Leydig cells, and a weak but specific reaction was occasionally detected in Sertoli and germ cells. In the prostate, specific labeling was observed in alveoli and stromal fibroblasts. In alveoli, all the basal cells were generally labeled, whereas the luminal cells exhibited variations in immunoreactivity. In all the reproductive organs examined, specific staining was routinely detected in the walls of blood vessels, including the endothelial cells. These results indicate a cell-specific localization of Type 5 17beta-HSD in the different human reproductive organs, thus suggesting new mechanisms of local androgen and estrogen formation that may play an important physiological role. 相似文献
7.
Tanahashi T Mune T Morita H Tanahashi H Isomura Y Suwa T Daido H Gomez-Sanchez CE Yasuda K 《The Journal of steroid biochemistry and molecular biology》2002,80(4-5):441-447
Licorice-derivatives such as glycyrrhizic acid (GA) competitively inhibit 11β-hydroxysteroid dehydrogenase(11β-HSD) type 2 (11-HSD2) enzymatic activity, and chronic clinical use often results in pseudoaldosteronism. Since the effect of GA on 11-HSD2 expression remains unknown, we undertook in vivo and in vitro studies. Male Wistar rats were given 30, 60 or 120 mg/kg of GA twice a day for 2 weeks. Plasma corticosterone was decreased in those given the 120 mg dose, while urinary corticosterone excretion was increased in those given the 30 and 60 mg doses but decreased in those given 120 mg GA. NAD+-dependent dehydrogenase activity in kidney microsomal fraction was decreased in animals receiving doses of 60 and 120 mg GA. The 11-HSD2 protein and mRNA levels were decreased in those given 120 mg GA. In contrast, in vitro studies using mouse kidney M1 cells revealed that 24 h treatment with glycyrrhetinic acid did not affect the 11-HSD2 mRNA expression levels. Thus, in addition to its role as a competitive inhibitor of 11-HSD2, the chronic high dose of GA suppresses mRNA and protein expression of 11-HSD2 possibly via indirect mechanisms. These effects may explain the prolonged symptoms after cessation of GA administration in some pseudoaldosteronism patients. 相似文献
8.
The immunocytochemical localization of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in porcine testes was examined by applying an indirect-immunofluorescence method using an antiporcine testicular 17 beta-HSD antibody. Only the Leydig cells located in the interstitial tissue exhibited a positive immunoreaction for 17 beta-HSD: the germ cells and Sertoli cells located in the seminiferous tubules were entirely negative. These results suggest that, in porcine testis, the biosynthesis of testicular testosterone, the final step of which is the conversion of androstenedione to testosterone, takes place in the Leydig cells. 相似文献
9.
Atanasov AG Tam S Röcken JM Baker ME Odermatt A 《Biochemical and biophysical research communications》2003,308(2):257-262
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others. 相似文献
10.
11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 2 has been considered to protect the mineralocorticoid receptor (MR) by converting 11beta-hydroxyglucocorticoids into their inactive 11-keto forms, thereby providing specificity to the MR for aldosterone. To investigate the functional protection of the MR by 11beta-HSD2, we coexpressed epitope-tagged MR and 11beta-HSD2 in HEK-293 cells lacking 11beta-HSD2 activity and analyzed their subcellular localization by fluorescence microscopy. When expressed alone in the absence of hormones, the MR was both cytoplasmic and nuclear. However, when coexpressed with 11beta-HSD2, the MR displayed a reticular distribution pattern, suggesting association with 11beta-HSD2 at the endoplasmic reticulum membrane. The endoplasmic reticulum membrane localization of the MR was observed upon coexpression only with 11beta-HSD2, but not with 11beta-HSD1 or other steroid-metabolizing enzymes. Aldosterone induced rapid nuclear translocation of the MR, whereas moderate cortisol concentrations (10-200 nm) did not activate the receptor, due to 11beta-HSD2-dependent oxidation to cortisone. Compromised 11beta-HSD2 activity (due to genetic mutations, the presence of inhibitors, or saturating cortisol concentrations) led to cortisol-induced nuclear accumulation of the MR. Surprisingly, the 11beta-HSD2 product cortisone blocked the aldosterone-induced MR activation by a strictly 11beta-HSD2-dependent mechanism. Our results provide evidence that 11beta-HSD2, besides inactivating 11beta-hydroxyglucocorticoids, functionally interacts with the MR and directly regulates the magnitude of aldosterone-induced MR activation. 相似文献
11.
In this paper, we examine corticosteroid 11 beta-oxidation and 11-reduction as properties of the microsomal 11 beta-hydroxysteroid dehydrogenase complex in vertebrate livers. No hepatic activity in the oxidative direction (11 beta -dehydrogenase) was found in the frog, toad, mud puppy, shark, and bird livers. In contrast, all mammalian livers had active oxidizing enzymes. Latency, defined as microsome-linked activity released by the detergent Triton DF-18, was a property of 11 beta-dehydrogenase in all mammalian livers. Mammal, bird, and dogfish livers reduced 11-dehydrocorticosteroids (11-reductase), while amphibians and bony fish did not. With the exception of rat liver, latency was a property of all the mammalian liver 11-reductases examined. 相似文献
12.
13.
14.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause. 相似文献
15.
17β-Hydroxysteroid dehydrogenase type 11 (17βHSD11) is mostly localized on the endoplasmic reticulum (ER) membrane under normal conditions and redistributes to lipid droplets (LDs) when the formation of LDs is induced. In this study, confocal microscopy analyses of the subcellular localization of the mutated 17βHSD11 proteins in cells with or without LDs revealed that both an N-terminal hydrophobic sequence and an adjacent sequence that has a weak homology with the PAT motif are independently necessary and both parts together (28 amino acid residues in total) are sufficient for the dual localization of 17βHSD11. Mutation analyses suggest that the PAT-like motif in 17βHSD11 will not be functionally similar to the canonical PAT motif. Hsp60 was identified as a possibly interacting protein with the PAT-like motif, and biochemical and microscopic analyses suggest that Hsp60 may be partly, but not necessarily involved in recognition of the PAT-like part of the targeting sequence of 17βHSD11. 相似文献
16.
Extraction of 11 beta-hydroxysteroid dehydrogenase from rat liver microsomes by detergents 总被引:1,自引:0,他引:1
In these studies our goal was to solubilize the microsomal enzyme, 11 beta-hydroxysteroid dehydrogenase (11-HSD) as the first step in its purification. Enzyme was extracted from rat liver microsomes with representative detergents (Zwittergents, Tritons, modified sterols). Oxidation-reduction (O-R) ratios of extracts varied with detergent used and ranged from 0.18 (CHAPS) to 3.8 (Zwittergent 3-14) relative to a ratio of 1.7 in intact microsomes. All detergents solubilized 11-HSD using lack of sedimentation during high speed centrifugation as criterion. With Triton DF-18 and Triton X-100, optimum extraction of 11-HSD occurred in the detergent-protein ratio range of 0.1 to 0.2 O-R ratios decreased with increased Triton X-100, but were constant as Triton DF-18 was varied. The pH optimum of enzyme extraction was 9 at a detergent-protein ratio of 0.05 and 7.5-8.0 at a ratio of 0.2. Sodium chloride increased enzyme extraction by detergents; in the absence of detergent, salt extracted protein, but not enzyme. In aqueous solution at 0 degrees C or -15 degrees C, microsomal 11-oxidation activity rose within 24 h, then decreased; reductase activity consistently decreased. Oxidation and reduction activities were inversely related in the microsomal bound enzyme. No relationship between these activities appeared in detergent-solubilized enzymes. Possible mechanisms to account for the unexpected behavior of this enzyme are discussed. 相似文献
17.
Background
Leydig cells are the primary source of testosterone in male vertebrates. The biosynthesis of testosterone in Leydig cells is strictly dependent on luteinizing hormone (LH). On the other hand, it can be directly inhibited by excessive glucocorticoid (Corticosterone, CORT, in rats) which is beyond the protective capability of 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and type 2 (11beta-HSD2; encoded by gene Hsd11b2 in rats) in Leydig cells. Our previous study found that LH increases 11beta-HSD1 expression in rat Leydig cells, but the effect of LH on the expression and activity of 11beta-HSD2 is not investigated yet. 相似文献18.
Georges Pelletier Van Luu-The Songyun Li Fernand Labrie 《The journal of histochemistry and cytochemistry》2005,53(10):1257-1271
The enzyme type 8 17beta-hydroxysteroid dehydrogenase (17beta-HSD) selectively catalyzes the conversion of estradiol (E2) to estrone (E1). To obtain detailed information on the sites of action of type 8 17beta-HSD, we have studied the cellular localization of type 8 17beta-HSD mRNA in mouse tissues using in situ hybridization. In the ovary, hybridization signal was detected in granulosa cells of growing follicles and luteal cells. In the uterus, type 8 17beta-HSD mRNA was found in the epithelial (luminal and glandular) and stromal cells. In the female mammary gland, the enzyme mRNA was seen in ductal epithelial cells and stromal cells. In the testis, hybridization signal was observed in the seminiferous tubule. In the prostate, type 8 17beta-HSD was detected in the epithelial cells of the acini and stromal cells. In the clitoral and preputial glands, labeling was detected in the epithelial cells of acini and small ducts. The three lobes of the pituitary gland were labeled. In the adrenal gland, hybridization signal was observed in the three zones of the cortex, the medulla being unlabeled. In the kidney, the enzyme mRNA was found to be expressed in the epithelial cells of proximal convoluted tubules. In the liver, all the hepatocytes exhibited a positive signal. In the lung, type 8 17beta-HSD mRNA was detected in bronchial epithelial cells and walls of pulmonary arteries. The present data suggest that type 8 17beta-HSD can exert its action to downregulate E2 levels in a large variety of tissues. 相似文献
19.
Z. Krozowski K. X. Z. Li K. Koyama R. E. Smith V. R. Obeyesekere A. Stein-Oakley H. Sasano C. Coulter T. Cole K. E. Sheppard 《The Journal of steroid biochemistry and molecular biology》1999,69(1-6):391-401
Local tissue concentrations of glucocorticoids are modulated by the enzyme 11β-hydroxysteroid dehydrogenase which interconverts cortisol and the inactive glucocorticoid cortisone in man, and corticosterone and 11-dehydrocorticosterone in rodents. The type I isoform (11β-HSD1) is a bidirectional enzyme but acts predominantly as a oxidoreductase to form the active glucocorticoids cortisol or corticosterone, while the type II enzyme (11β-HSD2) acts unidirectionally producing inactive 11-keto metabolites. There are no known clinical conditions associated with 11β-HSD1 deficiency, but gene deletion experiments in the mouse indicate that this enzyme is important both for the maintenance of normal serum glucocorticoid levels, and in the activation of key hepatic gluconeogenic enzymes. Other important sites of action include omental fat, the ovary, brain and vasculature. Congenital defects in the 11β-HSD2 enzyme have been shown to account for the syndrome of apparent mineralocorticoid excess (AME), a low renin severe form of hypertension resulting from the overstimulation of the non-selective mineralocorticoid receptor by cortisol in the distal tubule of the kidney. Inactivation of the 11β-HSD2 gene in mice results in a phenotype with similar features to AME. In addition, these mice show high neonatal mortality associated with marked colonic distention, and remarkable hypertrophy and hyperplasia of the distal tubule epithelia. 11β-HSD2 also plays an important role in decreasing the exposure of the fetus to the high levels of maternal glucocorticoids. Recent work suggests a role for 11β-HSD2 in non-mineralocorticoid target tissues where it would modulate glucocorticoid access to the glucocorticoid receptor, in invasive breast cancer and as a mechanism providing ligand for the putative 11-dehydrocorticosterone receptor. While previous homologies between members of the SCAD superfamily have been of the order of 20–30% phylogenetic analysis of a new branch of retinol dehydrogenases indicates identities of >60% and overlapping substrate specificities. The availability of crystal structures of family members has allowed the mapping of conserved 11β-HSD domains A–D to a cleft in the protein structure (cofactor binding domain), two parallel β-sheets, and an -helix (active site), respectively. 相似文献
20.
The 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity in rat and mouse preimplantation embryos was determined by measuring the interconversion of estradiol (E2) and estrone (E1). Rat and mouse embryos were cultured in medium containing 450 nM [3H]E1 or -E2 and the amount of [3H]E1 and -E2 in the medium at the end of the first hour was determined. The results showed that in both species 17 beta-HSD activity was detectable from the one-cell stage (Day 1) onward. In the rat, 17 beta-HSD effected primarily E2----E1 conversion, with the activity decreasing from Day 1 to Day 5. In the mouse, we found primarily E1----E2 conversion from Day 1 to the morning of Day 4, then E2----E1 increased sharply to near the E1----E2 rate in the evening of Day 4 and surpassed the E1----E2 rate the next morning. It seems that: 1) 17 beta-HSD is active throughout the entire preimplantation period, and 2) the enzyme activity changes during preimplantation development. Thus, the rat and mouse preimplantation embryo could regulate the E1- to -E2 ratio in the embryos and in their environment. 相似文献