首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

2.
Activation of adenylate cyclase by forskolin in rat brain and testis   总被引:2,自引:0,他引:2  
Detergent-dispersed adenylate cyclase from rat cerebrum was detected in two components, one sensitive to Ca2+ and calmodulin and another sensitive to fluoride or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). The enzyme activity of both components was markedly augmented by forskolin assayed in the presence or absence of other enzyme activators (e.g., NaF, Gpp(NH)p, calmodulin). The catalytic subunit fraction in which G/F protein was totally lacking was also activated by forskolin. During 1-35 days of postnatal development, the basal adenylate cyclase activities in either cerebrum and cerebellum particulate preparations progressively increased. While the fluoride sensitivity of the cerebrum and cerebellum enzyme increased during postnatal development, the responsiveness to forskolin remained unaltered. There was no enhancement of soluble adenylate cyclase (from rat testis) by forskolin under the assay conditions in which there was a marked stimulatory action on the particulate enzyme. The results seen with the solubilized enzyme, with either Lubrol PX or cholate, indicate that the effects of forskolin on the cyclase do not require either G/F protein or calmodulin and the results of our study of brain enzymes support this view. Data on soluble testis cyclase (a poor or absent response to forskolin by this enzyme) imply that it lacks a protein (other than the catalytic unit) which could confer greater stimulation. The present results do not rule out an alternative explanation that forskolin stimulates adenylate cyclase by a direct interaction with the catalytic subunit, if the catalytic proteins do differ widely in various species of cells and their response to this diterpene.  相似文献   

3.
Adenylate cyclase activity in bovine cerebellar membranes is regulated by calmodulin, forskolin, and both stimulatory (Ns) and inhibitory (Ni) guanine nucleotide-binding components. The susceptibility of the enzyme to chymotrypsin proteolysis was used as a probe of structure-function relationships for these different regulatory pathways. Pretreatment of membranes with low concentrations of chymotrypsin (1-2 micrograms/ml) caused a three- to fourfold increase in basal adenylate cyclase activity and abolished the Ca2+-dependent activation of the enzyme by calmodulin. In contrast, the stimulation of the enzyme by GTP plus isoproterenol was strongly potentiated after protease treatment, an effect that mimics the synergistic activation of adenylate cyclase by Ns and calmodulin in unproteolyzed membranes. Limited proteolysis revealed low- and high-affinity components in the activation of adenylate cyclase by forskolin. The low-affinity component was readily lost on proteolysis, together with calmodulin stimulation of the enzyme. The activation via the high-affinity component was resistant to proteolysis and nonadditive with the Ns-mediated activation of the enzyme, suggesting that both effectors utilize a common pathway. The inhibitory effect of low concentrations (10(-7) M) of guanyl-5'-yl imidodiphosphate [Gpp(NH)p] on forskolin-activated adenylate cyclase was retained after limited proteolysis of the membranes, indicating that the proteolytic activation does not result from an impairment of the Ni subunit. Moreover, in the rat cerebellum, proteolysis as well as calmodulin was found to enhance strongly the inhibitory effect of Gpp(NH)p on basal adenylate cyclase activity. Our results suggest that calmodulin and Ns/Ni interact with two structurally distinct but allosterically linked domains of the enzyme. Both domains appear to be involved in the mode of action of forskolin.  相似文献   

4.
The octaethyleneglycol mono-n-dodecyl ether solubilized Ca2+-ATPase purified from human erythrocytes has been studied to determine the physical mechanism of its activation by calmodulin. The dependence of Ca2+-ATPase activity on the enzyme concentration shows a transformation from a calmodulin-dependent to a fully active calmodulin-independent form. The transformation is cooperative with a half-maximal activation at 10-20 nM enzyme. This suggests that at higher enzyme concentrations interactions between Ca2+-ATPase polypeptide chains substitute for calmodulin-enzyme interactions, resulting in activation. In support of this interpretation, the inclusion of higher octaethyleneglycol mono-n-dodecyl ether concentrations shifts the half-maximal transformation to higher enzyme concentrations. Regardless of the detergent concentration, calmodulin decreases by about 2-fold the enzyme concentration required to observe half-maximal Ca2+-ATPase activation, without affecting the maximal velocity or cooperativity. This indicates that calmodulin facilitates interactions between enzyme molecules. The fluorescein-5'-isothiocyanate-modified Ca2+-ATPase shows an increase in fluorescence polarization which occurs over the same narrow concentration range that is seen with the Ca2+-ATPase activity, confirming association of enzyme molecules. Stimulation of the Ca2+-ATPase activity by calmodulin has revealed a stoichiometry of 0.73, with a dissociation constant of 1.6 nM calmodulin. We have demonstrated by use of calmodulin-Sepharose chromatography that both the calmodulin-dependent and independent Ca2+-ATPase forms bind calmodulin, even though stimulation of activity is seen only with the former one. Our data suggest the following two mechanisms for the Ca2+-ATPase activation: self-association of enzyme molecules or interaction with calmodulin.  相似文献   

5.
J R Sellers  E V Harvey 《Biochemistry》1984,23(24):5821-5826
It has previously been shown that the regulatory light chains of myosin from Limulus, the horseshoe crab, can be phosphorylated either by purified turkey gizzard smooth muscle myosin light chain (MLC) kinase or by a crude kinase fraction prepared from Limulus muscle [Sellers, J. R. (1981) J. Biol. Chem. 256, 9274-9278]. This phosphorylation was shown to be associated with a 20-fold increase in the actin-activated MgATPase activity of the myosin. We have now purified the Ca2+-calmodulin-dependent MLC kinase from Limulus muscle to near homogeneity by using a combination of low ionic strength extraction, ammonium sulfate fractionation, and chromatography on Sephacryl S-300 and DEAE-Sephacel. The final purification was achieved by affinity chromatography on a calmodulin-Sepharose 4B column. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed 95% of the protein to be comprised of a doublet with Mr = 39000 and 37000. Electrophoresis of the kinase fraction under nondenaturing conditions resulted in a partial separation of the two major bands and demonstrated that each had catalytic activity. An SDS-polyacrylamide gel overlayed with 125I-calmodulin demonstrated that both the Mr 39K and the Mr 37K proteins bind calmodulin. Neither of the bands could be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. With Limulus myosin light chains as a substrate, the Vmax was 15.4 mumol min-1 mg-1, and the Km was 15.6 microM. The KD for calmodulin was determined to be 6 nM. The enzyme did not phosphorylate histones, casein, actin, or tropomyosin.  相似文献   

6.
The soluble high Km form of cyclic nucleotide phosphodiesterase (EC 3.4.1.17) was purified over 2000-fold from bovine brain homogenates principally using blue dextran-Sepharose chromatography. The purified protein has a specific enzymic activity of 167 units/mg and appears homogeneous when examined by polyacrylamide gel electrophoresis. The enzyme has a molecular weight of 1.26 +/- 0.05 x 10(5) consisting of two apparently identical polypeptide chains. Kinetic measurements indicate that the substrates cyclic GMP and cyclic AMP each have a single Km value, 9 +/- 1 micron and 150 +/- 50 micron, respectively, that the two cyclic nucleotides compete for the same catalytic site, that the blue dye of blue dextran-Sepharose is a competitive inhibitor for the cyclic nucleotides, and that the Vmax with cyclic AMP as substrate is about an order of magnitude larger than that for cyclic GMP. Bovine brain calmodulin stimulates the catalytic rate of the purified enzyme in the presence of Ca2+ by increasing the Vmax associated with each cyclic nucleotide substrate.  相似文献   

7.
Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.  相似文献   

8.
A comprehensive set of hybrid molecules of aspartate transcarbamylase (ATCase) from Escherichia coli has been constructed of wild-type and mutationally altered catalytic chains. The mutant enzymes that were virtually devoid of activity contained a replacement of Gly-128 in the catalytic polypeptide chains by either Asp or Arg. The kinetic properties of these hybrid enzyme-like molecules were analyzed to evaluate the basis for the unusual quaternary constraint demonstrated by an intersubunit hybrid containing one wild-type catalytic subunit, one inactive mutant subunit (containing the Gly to Asp replacement), and three wild-type regulatory subunits. A similar intersubunit hybrid was constructed from the wild-type catalytic subunit and the mutant in which Gly-128 was replaced by Arg, and it too demonstrated a pronounced decrease in activity relative to that expected for a hybrid containing three active sites. Moreover, neither of these hybrid holoenzymes exhibited the cooperativity with respect to aspartate that is characteristic of wild-type ATCase. In contrast, hybrid holoenzymes containing at least one wild-type chain in each catalytic subunit showed cooperativity. Also, hybrid enzymes containing different arrangements of five, four, three, or two wild-type catalytic chains with an appropriate complement of mutant chains had specific activities proportional to the number of wild-type chains in the holoenzymes. Exceptions were observed only in hybrids in which one of the two subunits in the holoenzyme was composed completely of mutant catalytic chains. For these hybrids the negative complementation was manifested as a much lower enzyme activity than expected from the number of wild-type chains in the enzyme and the loss of cooperativity. Thus, the activity and allosteric properties of these hybrids is dependent on the arrangement of catalytic chains in the holoenzyme, in contrast to results obtained for hybrids containing native and chemically modified catalytic chains. Intrasubunit hybrid catalytic trimers containing one or two wild-type chains exhibited one-third and two-thirds the activity of the intact wild-type catalytic subunit, respectively, indicating the dominant negative effect that was seen in intersubunit hybrid holoenzymes is absent within trimers.  相似文献   

9.
A proenzyme form of human urokinase   总被引:21,自引:0,他引:21  
A culture of the human epidermoid carcinoma HEp 3 produces a plasminogen activator of Mr = 53,000 which we have purified to apparent homogeneity from serum-free conditioned medium by the combination of immunoaffinity chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The highly purified protein has the following properties: 1) It is indistinguishable from urinary urokinase in electrophoretic mobility, in immunodiffusion, and in autoradiographically visualized tryptic peptide maps obtained from the 125I-labeled proteins. 2) The HEp 3 protein differs from urinary urokinase in the following respects: (a) although the apparent molecular weights of the two are identical (Mr = 53,000), the urinary enzyme consists of two polypeptide chains, whereas the HEp 3 protein is a single chain form. (b) Urinary urokinase can be labeled easily by incubation with radioactive diisopropylfluorophosphate but the HEp 3 protein cannot. (c) When assayed by the hydrolysis of a synthetic chromogenic peptide substrate, the HEp 3 enzyme has less than 1% of the catalytic activity of urinary urokinase. 3) On controlled exposure to plasmin, the HEp 3 protein is converted to an active enzyme that is identical with urinary urokinase in molecular weight, polypeptide chain composition, diisopropylfluorophosphate labeling, and specific catalytic activity. We conclude that the HEp 3 protein is a proenzyme that can be converted to active two-chain urokinase by plasmin, probably by a single proteolytic nick in the polypeptide chain.  相似文献   

10.
A calmodulin-sensitive adenylate cyclase has been purified to apparent homogeneity from bovine cerebral cortex using calmodulin-Sepharose followed by forskolin-Sepharose and wheat germ agglutinin-Sepharose. The final product appeared as one major polypeptide of approximately 135,000 daltons on sodium dodecyl sulfate-polyacrylamide gels. This polypeptide was a major component of the protein purified through calmodulin-Sepharose. The catalytic subunit was stimulated 3-4-fold by calmodulin (CaM) with a turnover number greater than 1000 min-1 and was directly inhibited by adenosine. The catalytic subunit of the enzyme interacted directly with 125I-CaM on a sodium dodecyl sulfate-polyacrylamide gel overlay system, and this interaction was Ca2+ concentration dependent. In addition, the catalytic subunit was shown to directly bind 125I-labeled wheat germ agglutinin using a sodium dodecyl sulfate-polyacrylamide gel overlay technique, and N-acetylglucosamine inhibited binding of the lectin to the catalytic subunit. Calmodulin did not inhibit binding of wheat germ agglutinin to the catalytic subunit, and the binding of calmodulin was unaffected by wheat germ agglutinin. These data illustrate that the catalytic subunit of the calmodulin-sensitive adenylate cyclase is a glycoprotein which interacts directly with calmodulin and that adenosine can inhibit the enzyme without intervening receptors or G coupling proteins. It is concluded that the catalytic subunit of adenylate cyclase is a transmembrane protein with a domain accessible from the outer surface of the cell.  相似文献   

11.
Purification of cytoplasmic dynein from unfertilized sea urchin eggs was performed in the presence of protease inhibitors to avoid proteolysis throughout the purification procedure, which comprised several chromatographies, including a calmodulin-Sepharose 4B affinity column chromatography. This is the first report of the purification of cytoplasmic dynein to near homogeneity. The purified fraction was composed of a single high molecular weight polypeptide and some minor low molecular weight polypeptides. The high molecular weight polypeptide comigrated with flagellar dynein A beta chain from sperm on SDS-polyacrylamide gels. There was no polypeptide stainable with periodic acid-Schiff reagent (PAS) in the purified cytoplasmic dynein fraction. Cytoplasmic dynein showed characteristics quite similar to those of axonemal dynein, i.e. high substrate specificity for ATP and inhibition by low concentrations of vanadate, though its Ca-ATPase activity showed almost the same dependence on the concentration of either divalent cations or KC1 as the Mg-ATPase activity. The purified enzyme seemed to possess functional form as judged from its properties: 1) pH dependence of the ATPase activity, 2) dependence of the ATPase activity on MgCl2 and KCl concentration, 3) Km for Mg-ATP, and 4) binding to flagellar doublet microtubules. Cytoplasmic dynein bound to calmodulin-Sepharose 4B only in the presence of Ca2+, and was eluted with EGTA. Furthermore, the ATPase activity was enhanced 6-fold by calmodulin in a Ca2+-dependent manner. The activation by calmodulin was prevented by a stoichiometric amount of trifluoperazine.  相似文献   

12.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

13.
Smooth muscle phosphatase-I (SMP-I), a protein phosphatase purified from turkey gizzard smooth muscle, is composed of 2 regulatory subunits (Mr = 60,000 and 55,000) and a catalytic subunit (Mr = 38,000). Two other forms of this enzyme have been prepared and characterized. The free catalytic subunit, termed SMP-Ic, was prepared by ethanol treatment of SMP-I, and a form devoid of the 55,000-Da subunit, termed SMP-I2, was prepared by limited tryptic digestion. Exposure of SMP-I to proteases like trypsin and chymotrypsin results in a rapid degradation of the 55,000-Da polypeptide. Degradation of the catalytic subunit is observed only upon prolonged digestion. The 60,000-Da polypeptide appears to be resistant to the action of trypsin and chymotrypsin. SMP-I dephosphorylates myosin light chains but is not active toward intact myosin or heavy meromyosin. However, when the catalytic subunit is dissociated from both regulatory subunits or from the 55,000-Da polypeptide, the enzyme becomes active toward myosin suggesting that the 55,000-Da polypeptide inhibits the activity of the catalytic subunit toward myosin. In addition to alteration of the substrate specificity, the regulatory subunits also modulate the effect of divalent cations, like Mn2+, on the activity of the enzyme.  相似文献   

14.
Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain   总被引:7,自引:0,他引:7  
The ATP-dependent, calmodulin-sensitive 3-kinase responsible for the conversion of D-myo-inositol 1,4,5-trisphosphate to D-myo-inositol 1,3,4,5-tetrakisphosphate has been purified 2,700-fold from rat brain to a specific activity of 2.3 mumol/min/mg protein. A method of purification is described involving chromatography on phosphocellulose, Orange A dye ligand, calmodulin agarose, and hydroxylapatite columns. Neither the highly purified enzyme nor enzyme eluting from the phosphocellulose column were activated by Ca2+. However, enzyme in the 100,000 x g supernatant from rat brain was activated by Ca2+ over the range from 10(-7) to 10(-6) M and Ca2+ sensitivity of the purified enzyme was restored by the addition of calmodulin. The enzyme has a catalytic subunit Mr of 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography of the purified enzyme on a Superose 12 column gave a Mr value of 70,000, indicating that the purified enzyme was present as a monomer. In contrast, the 100,000 x g supernatant and the purified enzyme after addition of calmodulin and 10(-6) M Ca2+ chromatographed on size exclusion chromatography with a Mr of 150,000-160,000. These results imply that the native enzyme is a dimeric structure of two catalytic subunits plus calmodulin. The purified enzyme showed a Km of 0.21 +/- 0.08 microM for D-myo-inositol 1,4,5-trisphosphate and had a pH optimum of 8.5. Addition of calmodulin increased both the Km and the Vmax of the purified enzyme about 2-fold. The high affinity of the 3-kinase for D-myo-inositol 1,4,5-trisphosphate together with its activation by Ca2+/calmodulin suggests that this enzyme may exert an important regulatory role in inositol phosphate signaling by promoting the formation of additional inositol polyphosphate isomers.  相似文献   

15.
A proteinase specific for calmodulin has been identified in a crude rat kidney Triton-extracted or sonicated mitochondrial fraction and solubilized by EGTA extraction of these membranes. Mitochondrial fractions from other tissues had less activity, with relative activities: kidney = spleen greater than testes greater than liver, and no detectable activity in either brain or skeletal muscle. This enzyme is active in the presence of EGTA, but not in the presence of calcium, and cleaves calmodulin into three major peptide fragments with Mr 6000, 9000 and 10,000. N-methylated and non-methylated calmodulins were both cleaved by calmodulin proteinase and while troponin was a poor substrate, it was cleaved in the presence of either calcium or EGTA. No other EF hand calcium-binding proteins or other major mitochondrial proteins were cleaved by this enzyme. The peptides resulting from calmodulin proteinase action were isolated by reverse-phase high performance liquid chromatography (HPLC) and sequenced. Sequence analysis indicated that calmodulin proteinase cleaves calmodulin at Lys-75. The effects of proteinase inhibitors indicate that calmodulin proteinase is a trypsin-like enzyme belonging to the serine endopeptidase family of enzymes.  相似文献   

16.
Polyclonal antibodies responding specifically to the N-terminal, central and C-terminal polypeptide domains of the herpes simplex virus type I (HSV-1) DNA polymerase of strain Angelotti were generated. Each of the five different rabbit antisera reacted specifically with a viral 132 +/- 5-kDa polypeptide as shown by immunoblot analysis. Enzyme binding and inhibition studies revealed that antibodies raised to the central and the C-terminal domains of the protein inhibited the polymerizing activity by 70-90%, respectively, which is well in line with the proposed site of the catalytic center of the enzyme and with the possible involvement of these polypeptide chains in DNA-protein interactions. In agreement with this, antibodies directed towards the N-terminal domain bound to the enzyme without effecting the enzymatic activity. The strong binding but low inhibitory properties of antibodies directed to the polypeptide region between residues 1072 and 1146 confirms previous suggestions that these C-terminal sequences, which share no homology to the Epstein-Barr virus DNA polymerase, are less likely involved in the building of the polymerase catalytic site. Antibodies, raised to the very C terminus of the polymerase (EX3), were successfully used to identify a single 132 +/- 5-kDa polypeptide, which coeluted with the HSV DNA polymerase activity during DEAE-cellulose chromatography, and were further shown to precipitate a major viral polypeptide of identical size. From the presented data it can be concluded that the native enzyme consists of a single polypeptide with a size predicted from the long open reading frame of the HSV-1 DNA polymerase gene.  相似文献   

17.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

18.
Incubation of clathrin-coated vesicles with Mg2+-[gamma-32P]ATP results in the autophosphorylation of a 50-kDa polypeptide (pp50) (Pauloin, A., Bernier, I., and Jollès, P. (1982) Nature 298, 574-576). We describe here a second protein kinase that is associated with calf brain and liver coated vesicles. This kinase, which phosphorylates casein and phosvitin but not histone and protamine using either ATP or GTP, co-fractionates with coated vesicles as assayed by gel filtration, electrophoresis, and sedimentation. The enzyme can be extracted with 0.5 M Tris-HCl or 1 M NaCl, and can be separated from the pp50 kinase as well as the other major coat proteins. We identified this enzyme as casein kinase II based on physical and catalytic properties and by comparative studies with casein kinase II isolated from brain cytosol. It has a Stokes radius of 4.5 nm, a catalytic moiety of approximately 45 kDa, and labels a polypeptide of 26 kDa when the pure enzyme is assayed for autophosphorylation. Its activity is inhibited by heparin and not affected by cAMP, phospholipids, or calmodulin. This protein kinase preferentially phosphorylates clathrin beta-light chain. The phosphorylation is markedly stimulated by polylysine and inhibited by heparin. Isolated beta-light chain as well as beta-light chain in triskelions or in intact coated vesicles is phosphorylated. All of the phosphate (0.86 mol of Pi/mol of clathrin beta-light chain) is incorporated into phosphoserine.  相似文献   

19.
Eukaryotic glycogen debranching enzyme (GDE) possesses two different catalytic activities (oligo-1,4-->1,4-glucantransferase/amylo-1,6-glucosidase) on a single polypeptide chain. To elucidate the structure-function relationship of GDE, the catalytic residues of yeast GDE were determined by site-directed mutagenesis. Asp-535, Glu-564, and Asp-670 on the N-terminal half and Asp-1086 and Asp-1147 on the C-terminal half were chosen by the multiple sequence alignment or the comparison of hydrophobic cluster architectures among related enzymes. The five mutant enzymes, D535N, E564Q, D670N, D1086N, and D1147N were constructed. The mutant enzymes showed the same purification profiles as that of wild-type enzyme on beta-CD-Sepharose-6B affinity chromatography. All the mutant enzymes possessed either transferase activity or glucosidase activity. Three mutants, D535N, E564Q, and D670N, lost transferase activity but retained glucosidase activity. In contrast, D1086N and D1147N lost glucosidase activity but retained transferase activity. Furthermore, the kinetic parameters of each mutant enzyme exhibiting either the glucosidase activity or transferase activity did not vary markedly from the activities exhibited by the wild-type enzyme. These results strongly indicate that the two activities of GDE, transferase and glucosidase, are independent and located at different sites on the polypeptide chain.  相似文献   

20.
The calmodulin-sensitive Ca2+ -pumping ATPase was purified to virtual homogeneity from erythrocytes. The purified enzyme exists in two functional states, having low and high Ca2+ affinity. Transition from low to high affinity is induced by 1) calmodulin; 2) acidic phospholipids, long-chain polyunsaturated fatty acids, polyphosphoinositides; and 3) a controlled proteolytic treatment with trypsin or chymotrypsin. The ATPase can be reconstituted into liposomes, where it pumps Ca2+ in exchange for H+ with a stoichiometry to ATP approaching 1. The purified enzyme can be fragmented by trypsin into a number of transient and of limit polypeptides, of which the most interesting from the functional standpoint are the following: 1) a limit polypeptide of Mr 76,000 that contains the active site (i.e., the sequence where the acyl-phosphate is formed); 2) a limit polypeptide of Mr 33,500 that binds the hydrophobic photoactivable label 3-trifluoromethyl-3-(m-(125I-iodophenyl]-diazirine, and is thus presumably the most hydrophobic portion of the molecule; and 3) a transient polypeptide of Mr 90,000 and a limit polypeptide of Mr 25,000-28,000, which specifically bind azido-modified, 125 I-labeled calmodulin. The transient 90,000-dalton calmodulin receptor is rapidly degraded to the 81,000-76,000 limit polypeptide. It can be isolated from the other proteolysis products on calmodulin affinity chromatography columns. The isolated 90,000-dalton fragment is a fully competent, calmodulin-sensitive ATPase that pumps Ca2+ into reconstituted liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号