首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemotaxis of large granular lymphocytes   总被引:2,自引:0,他引:2  
The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-beta and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1+ cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 micron nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (greater than 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. The chemotactic LGL was HNK-1+, OKT11+ or HNK-1+, OKT11- on the basis of monoclonal antibody and complement depletion. They did not bear either T cell or monocyte cell surface markers, exhibiting an OKT3-, OKT4-, OKT8-, OKM1-, and MO2- phenotype, and did not form E rosettes at 29 degrees C, which is characteristic of lytic NK cells in contrast to T cells. Furthermore, a rat LGL leukemia (RNK) exhibited a chemotactic response to both f-MLP and casein. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML[3H]P, suggesting that LGL bear receptors for the chemotactic peptide.  相似文献   

2.
An alveolar macrophage-activating factor was released from Percoll fractionated large granular lymphocytes (LGL) within minutes of contact with either the natural killer (NK)-sensitive K562 tumor or heat-killed Staphylococcus aureus. The factor enhanced the intracellular killing of S. aureus without altering the rate of phagocytosis. Factor release was blocked by treatment of LGL with monensin, a carboxylic ionophore that inhibits vesicular traffic, but was unaffected by actinomycin D and cycloheximide pretreatment, suggesting that the cytokine was performed. The cell producing the factor was found only in Percoll fractions containing high concentrations of lytic NK cells and LGL, and the phenotypes of the LGL were HNK-1+ and E rosette-. The macrophage activating factor was a small protein of 10,000 to 20,000 daltons, as determined by gel fractionation, and was sensitive to proteolytic enzymes and heat and pH labile. Active supernatants were devoid of antiviral (interferon; IFN) or interleukin 2 (IL 2) activity, and IFN-beta, IFN-gamma, IL 2, and interleukin 1 were unable to activate staphylococcidal activity, suggesting that the LGL macrophage activating factor was distinguishable from these cytokines.  相似文献   

3.
Natural killer cytotoxic factor (NKCF) has been proposed as one of the factors that mediates lysis induced by natural killer (NK) cells. Recently, an excellent source of NKCF has been found to be the rat large granular lymphocyte (LGL) tumor (RNK) cell line. In this study, the kinetics of lysis of the NK-sensitive, tumor target YAC-1 by the RNK-NKCF was analyzed and found to parallel that seen with NK cell-mediated killing. RNK-NKCF was also capable of killing the NK-resistant target cell, MBL-2, over a longer time period. This study utilized monoclonal antibodies (mAbs) prepared against granule protein, previously termed "anti-NKCF mAbs." These mAbs established the nature of RNK-NKCF as compared to other known cytotoxic factors in combination with studies that show that RNK-NKCF causes both 51Cr release and nuclear degradation. Antibody inhibition experiments have verified that RNK-NKCF is unique from tumor necrosis factor (TNF), leukoregulin, or complement. Anti-NKCF mAbs were capable, however, of neutralizing the RNK cell granule activity against YAC-1 tumor target cells. Based on these results, the ability of anti-NKCF mAbs to neutralize the cytolytic function of pore-forming protein (PFP), a component of these granules, was analyzed. In these experiments, the antibodies were found to inhibit the hemolytic activity of granules. Interestingly, the antibodies were effective in inhibiting the activity of unbound granule proteins as well as those bound to sheep red blood cell (SRBC) targets. Further studies to examine the target lysis requirements demonstrated that in contrast to PFP, the RNK-NKCF was able to lyse the tumor target in the absence of calcium. In addition, treatment of targets with RNA and protein synthesis inhibitors indicated that the mechanism of lysis of NKCF is quite unique from other defined cytotoxic moieties.  相似文献   

4.
The present study reports the characterization of a non-T cell from human peripheral blood which is capable of releasing BCGF. This BCGF-producing non-T cell had a T3-, T8-, Leu-7+, OKM1+, HLA-DR-, Leu-11- surface phenotype and was likely to belong to the so-called large granular lymphocyte (LGL) subset because: after fractionation of non-T cells according to the expression of Leu-7 or HLA-DR markers, it was found in the Leu-7+, HLA-DR- fractions that were particularly enriched in LGL; it co-purified with LGL on Percoll density gradients; and it expressed Leu-7 and OKM1 markers that are shared by a large fraction of LGL. Although co-purified with cells with potent NK capacities, the BCGF-producing cell was not cytotoxic, because treatment of Leu-7+ cells with Leu-11 monoclonal antibody and complement abolished the NK activity but left the BCGF activity unaltered. The factor released by this LGL subset was not IL 1 or IL 2 mistakenly interpreted as BCGF, because: a) cell supernatants particularly rich in BCGF activity contained very little or no IL 1 or IL 2; b) BCGF-induced B cell proliferation was not inhibitable by anti-Tac antibodies (this in spite of the expression of IL 2 receptor by a proportion of activated B cells); and c) BCGF activity was absorbed by B but not T blasts.  相似文献   

5.
Using a 24-hr radiolabel microassay developed in our laboratory that measures [3H]glucose uptake in residual Candida, we have identified the effector cells responsible for in vitro inhibition of Candida albicans growth as mainly polymorphonuclear neutrophils (PMN) and monocytes within the human peripheral blood cells. Highly purified T cells and large granular lymphocytes (LGL) that mediate natural killer activity which were obtained by Percoll density gradient centrifugation were found to have no innate activity against C. albicans. The LGL could not be activated by interferon-alpha, interferon-gamma or interleukin 2 to inhibit Candida growth although their K562 tumor cytotoxic activity was readily enhanced by these cytokines. Stimulation with heat-killed C. albicans also did not activate fungal growth inhibitory function in LGL and the supernatant of these activated LGL had no direct fungicidal activity. However, the activated LGL supernatant had the capability to enhance PMN function against C. albicans growth. Addition of recombinant human tumor necrosis factor, affinity-purified interferon-alpha, or interferon-gamma to PMN caused increased antifungal activity in PMN. However, antibodies to these cytokines had only a partial adverse effect on the ability of the activated LGL supernatant to stimulate PMN anti-Candida function. Therefore, the activated LGL supernatant appeared to contain a potent stimulator of PMN function which is as yet unidentified. These data indicate that LGL did not directly mediate anti-Candida activity but could indirectly influence C. albicans growth by activating PMN against the fungi through the release of a specific PMN-activating factor. Our findings therefore add another role to LGL which is the regulation of PMN function, the consequence of which is regulation of fungal immunity.  相似文献   

6.
Tumor-activated NK cells trigger monocyte oxidative metabolism   总被引:2,自引:0,他引:2  
We have examined the hypothesis that tumor cells can stimulate a respiratory burst by human natural killer (NK) cells in vitro as measured by luminol-dependent chemiluminescence (CL). Percoll-purified NK cells, containing 40% HNK-1+ cells and less than 1 to 4% esterase-positive contaminating monocytes, can generate a strong CL response after stimulation with the NK-susceptible K562 tumor but not with the NK-resistant P815 tumor cells. Although the response was NK dependent, as shown by depletion with NK-directed monoclonal antibodies (HNK-1, OKT-11, and OKM-1), the cell generating the CL response was not the NK cell. On the basis of several independent experimental approaches the CL response always required the presence of monocytes in the NK preparation. a) Treatment with a monocyte-specific monoclonal antibody (MO2) and complement completely abolished CL. b) The cells producing the CL response were strongly adherent to nylon wool columns (NWC), and large granular lymphocyte preparations containing less than 0.1% esterase-positive cells were inactive. c) NK cells cultured in IL 2-containing medium and tested over several days did not generate CL. d) Optimal numbers of monocytes (less than 1 to 2%) added to a non-CL NWC-purified NK population restored CL, whereas larger or smaller amounts were ineffective. Neither these procedures nor the addition of superoxide dismutase (which completely blocked CL) had any effect on NK lytic activity. We subsequently demonstrated that a factor present in supernatants obtained from NK/K562 incubations, but not from NK or tumor cells alone, could stimulate monocyte CL. We therefore propose that the CL response measured in NK-enriched Percoll fractions originated from contaminating monocytes that were triggered by factor(s) released from tumor-activated NK cells, and that superoxide anion was not required for NK lysis.  相似文献   

7.
Rat peripheral blood large granular lymphocytes (LGL) were isolated by fractionation on discontinuous Percoll gradients. LGL migration was studied using nitrocellulose filters. Rat LGLs migrated into nitrocellulose filters in response to N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and serum components. Percoll-enriched high-density lymphocytes had small, but significant, migratory capacity in response to stimuli under these conditions. Removal of OX-19+ contaminating cells by panning confirmed the migratory capability of rat LGL/NK cells under these conditions. Checkerboard analysis of the LGL response to chemoattractants revealed that induction of migration involved chemokinesis although a chemotactic component was also discernible. The prompt migration of rat LGL in response to different stimuli is consistent with the hypothesis that these cells may represent one of the first easily mobilizable lines of resistance against noxious agents. In the rat combined in vitro/in vivo studies may provide a better understanding of the regulation of LGL recruitment and extravasation.  相似文献   

8.
Highly purified human large granular (LGL), depleted of any detectable contaminant T and B cells or monocytes, were found to be potent producers in vitro of a soluble B cell growth factor (BCGF) able to sustain proliferation of B cells activated by anti-mu. Activation by lectins (phytohemagglutinin, PHA, concanavalin A, Con A; and pokeweed mitogen, PWM) was required to induce the production of high levels of this BCGF from cultured LGL. Production of BCGF was also detected after the binding of LGL with natural killer (NK)-sensitive (K562) but not with NK-resistant (RL male 1) target cells. In contrast to T cells, LGL did not need the additional presence of accessory cells to reach optimal production of BCGF by 72 hr of culture. The subpopulation of LGL responsible for the production of BCGF had phenotypic characteristics associated with NK cells (3G8+, HNK1+/OKT11+, DR-, OKT3-, Leu-M1-), and separated cells with these markers exerted high levels of NK activity. Selective production of BCGF also was obtained from cytotoxic clones derived from LGL. A partial characterization of the LGL-derived BCGF was performed by gel filtration. BCGF activity was detected in fractions with estimated m.w. of 20,000 and 45,000. The LGL-derived BCGF activity was resistant to reduction with 2-mercaptoethanol and was stable at -20 degrees C for months. Conversely, heating (56 degrees C for 1 hr) or digestion with trypsin greatly reduced the LGL-derived BCGF activity. These findings strongly suggest that LGL including those with NK activity can play an important positive role in the early events of the B cell-mediated immune response.  相似文献   

9.
Natural killer cytotoxic factor (NKCF) is produced as a result of the interaction of murine, rat, or human natural killer (NK) cells with NK-susceptible targets. This factor has been linked to the target cell lysis mediated by the NK effector cell. In the present results, culture supernatants from rat large granular lymphocyte (LGL) tumors exhibited NKCF activity which lysed the susceptible targets, MBL-2 and YAC-1. NKCF production from these rat tumor lines was spontaneous and was not significantly increased by co-incubation of the LGL tumors with target cells, target cell membranes, or by preincubation of the LGL tumor cells with interferon or interleukin 2. In addition to NKCF activity, the supernatants lysed L929, indicating the presence of tumor necrosis factor (TNF) in these preparations. The presence of this latter cytokine was verified using specific antibodies to recombinant murine TNF which neutralized the L929 activity while not affecting the NKCF activity against MBL-2 or YAC-1. Mouse monoclonal antibodies (mAb) A0287, A0462, and A0316) which significantly inhibit the NKCF cytolytic activity of these LGL-derived supernatants were also produced. These antibodies were shown to cross-react with human NKCF in a manner similar to that seen in the rat. Interestingly these same mAb demonstrated no inhibition of L929 cytotoxicity from either LGL-derived supernatants or by recombinant murine or human TNF. To examine further the specificity of these antibodies, they were chemically linked to Sepharose 4B and found to remove a significant proportion of the NKCF cytolytic activity from LGL supernatants, while not affecting the TNF reactivities in these preparations. In addition, these antibodies demonstrated significant inhibition of cell-mediated cytotoxicity by rat LGL against YAC-1 target cells. Biochemical analysis of labeled NKCF-containing supernatants indicated the major protein recognized by these anti-NKCF mAb to be approximately 12,000 m.w. The use of these mAb against NKCF should be very useful in further purification and biochemical characterization of NKCF and in studying its role in a variety of cell-mediated cytotoxicity assays.  相似文献   

10.
Normal as well as transformed epidermal cells (EC) have recently been reported to produce a cytokine--EC-derived thymocyte-activating factor (ETAF), which according to its biologic as well as biochemical properties is indistinguishable from macrophage-derived interleukin 1 (IL 1). In the present study, the effect of supernatants (SN) derived from normal EC and a human squamous carcinoma cell (SCC) line were tested for their effects on natural killer (NK) cell activity. EC- as well as SCC-derived SN were able to augment in vitro NK cell activity of peripheral blood lymphocytes against K 562 cells. In contrast, adherent cell-derived, IL 1-containing SN did not affect NK cell activity. Upon high-pressure liquid chromatography (HPLC) gel filtration, ETAF and the EC-derived NK cell activity-augmenting factor (ENKAF) exhibited a similar m.w. However, by using reverse-phase HPLC, ETAF and ENKAF eluted as distinct peaks of activity, indicating that SCC cell-derived ENKAF is different from ETAF. Furthermore, ENKAF does not contain interleukin 2 (IL 2) or interferon (IFN) activity. The enhancement of NK cell activity was dose dependent and evident after 20 hr of preincubation of effector cells. Pretreatment of target cells with ENKAF did not affect the susceptibility of the target cells. The NK activity of large granular lymphocytes (LGL) purified by discontinuous Percoll gradient centrifugation and further depleted of high-affinity sheep erythrocyte rosetting cells was enhanced by ENKAF. In contrast, no NK cell activity was expressed by LGL-depleted T cell populations before or after treatment with ENKAF. In a single cell cytotoxicity assay in agarose, the number of lymphocyte binding to K 562 was not affected by ENKAF, but the frequency of dead conjugated target cells and presumably of active killer cells was increased by pretreatment with ENKAF. Additional incubation of LGL with ETAF did not further increase ENKAF-mediated augmentation of NK activity. In contrast to ETAF, ENKAF was not chemotactic for polymorphonuclear leukocytes. These results indicate that normal as well as transformed EC release a unique cytokine--ENKAF--which augments NK cell activity of LGL but is distinct from ETAF, IL 2, and IFN.  相似文献   

11.
A new method was developed which allows for rapid (2 min) physical isolation of viable K562 target cells after being programmed to lyse (lethally hit) by purified human natural killer (NK) cells (LGL). To achieve this K562 cells which were obtained from the 34-36% interface of discontinuous Percoll gradients and purified human NK cells (LGL) which were obtained from the (43-45% Percoll) interface were employed. Using a Ca2+ pulse method and the separation of NK-K562 conjugates with EDTA and rapid centrifugation on Percoll gradients at 4 degrees C we could physically isolate the lethally hit K562 cells from the LGL allowing the study of the events leading to their subsequent lysis. Lysis of "purified" lethally hit K562 cells occurred in the absence of Ca2+ or Mg2+ and was blocked by reduced temperature (4 degrees C), or by the protease enzyme trypsin. When lethally hit targets were held at 4 degrees C (to block lysis) then rewarmed to 37 degrees C lysis ensued but with a rate slower than that of control cells not held at 4 degrees C. These data support the concept that transfer of protease-sensitive and possibly temperature-dependent structures from the NK cell to the target is a requisite step in NK cytolysis.  相似文献   

12.
A peroxidase-colloidal gold double labeling system in immunoelectron microscopy was used to investigate the ultrastructural features of human large granular lymphocytes (LGL) subpopulations. Three subsets of LGL, Leu-7+-Leu-11-, Leu-7+-Leu-11+, Leu-7- -Leu-11+, were characterized using combinations of the monoclonal antibodies anti-Leu-7 and anti-Leu-11. They showed different ultrastructural patterns. In fact, Leu-7+-Leu-11- cells showed a high nuclear/cytoplasmic ratio (N/C), a round nucleus, a cytoplasm with few organelles, and a rather even surface. Moreover, most of them lacked electron-dense granules. On the other hand, Leu-11+ cells displayed a low N/C, an irregular-shaped nucleus, and a cytoplasm containing a well-developed Golgi apparatus, many mitochondria, vacuoles, vesicles, and numerous electron-dense granules. Moreover, they exhibited an irregular cell surface. Thus, Leu-7+-Leu-11- cells seemed to represent an immature form of LGL, while cells expressing the Leu-11 antigen showed a fine structure specific for functional NK cells. Our findings suggest that the expression of HNK-1 (Leu-7) and Leu-11 antigens respectively represents subsequent stages in NK cell differentiation.  相似文献   

13.
Leukocyte chemotaxis is initiated by the binding of chemotactic factors to specific, high-affinity receptors. Amphotericin B, a polyene antibiotic that binds to membrane cholesterol, inhibits human neutrophil (PMN) chemotaxis. We examined the effects of this drug on PMN functions mediated by the oligopeptide chemotactic factor receptor. The antibiotic irreversibly inhibited chemotaxis and depressed the binding of the radiolabeled chemoattractant, fMet-Leu-[3H]Phe, to its receptor without affecting the receptor's specificity. The drug lowered the binding affinity of the receptor by up to fivefold and slightly increased its number. Doses of amphotericin B that depressed receptor affinity and inhibited chemotaxis did not diminish lysosomal enzyme secretion or superoxide anion production. Nystatin, a less potent polyene antibiotic, also diminished chemotactic factor binding, but to a lesser degree than amphotericin B did. A chemically unrelated antifungal agent had no effect on either binding or chemotaxis. Thus, pharmacologic manipulation can alter the affinity of the chemotactic factor receptor on human PMN; this alteration is associated with a change in receptor function. The data suggest that receptor affinity regulates or at least reflects its functional state, and that the transduction mechanisms for various biologic responses mediated by the chemoattractant receptor are heterogeneous. By pharmacologic alterations of receptor affinity, one may be able to modulate specific biologic responses elicited by chemoattractant receptor-ligand interactions.  相似文献   

14.
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.  相似文献   

15.
To evaluate the role of NK cell granules in the lytic activity of NK cells, cytoplasmic granules of rat NK tumors were purified by centrifugation of the cell homogenates in a Percoll gradient. Analysis of such gradients showed a band of light-scattering material near the bottom of the tube; assay of gradient fractions for lytic activity against SRBC showed a potent lytic activity giving a sharp peak in this region. Complete lysis of SRBC was achieved with less than 1 microgram/ml protein of the most active fractions. Examination in the electron microscope showed that a pool of fractions containing lytic activity consisted of pure cytoplasmic granules showing similar morphology to those found in the LGL tumors. The lytic band was associated with a peak in the activity of four different lysosomal enzymes. Analysis of Percoll gradient fractions showed that marker enzymes for mitochondria, plasma membrane, and cytosol were well separated from this activity peak. Analysis of the Percoll gradient fractions by SDS gel electrophoresis showed that this granule fraction was free of contamination of proteins from other parts of the gradient. The granules contained major protein bands of 62, 58, 30, 29, and 28 kilodaltons. In addition to protein, the purified granule fractions contain hexose and uronic acid, but no nucleic acids or phospholipids were detected in chemical assays. Major amounts of chymotryptic, tryptic, and elastase activities were not present, nor were peroxidase or lysozyme activities detectable in substantial amounts. These data show that NK tumor cell cytoplasmic granules contain a potent lytic activity and have biochemical properties that distinguish them from granules present in granulocytes and mast cells.  相似文献   

16.
Recent work from our laboratory has shown that NK cells rapidly release preformed factor(s) that stimulate monocyte oxidative metabolism and microbicidal activity. We have hypothesized that such factors could also activate macrophage (M phi) tumor lysis and might be stored in the cytoplasmic granules. Granules were isolated from the RNK large granular lymphocyte leukemias by nitrogen cavitation and Percoll fractionation of the cell homogenate. Utilizing CSF-1 differentiated murine bone marrow-derived M phi and P815 tumor target cells, a M phi-activating factor (MAF) was found. The MAF activity was identified in two peaks, the first was coincident with dense granule enzymes and was 60 times more concentrated per mg protein than a second peak in the cytosol fractions. Solubilization in 2 M NaCl was necessary to recover activity from both peaks. Granule NK-MAF required the simultaneous presence of LPS in order to induce tumoricidal activity. Kinetics of NK-MAF activation peaked after 12 h of exposure. The NK-MAF was short lived in the solubilized granules; however, its heat resistance allowed us to prepare enriched and stable preparations. Treatment of NK-MAF with pepsin but not trypsin completely abrogated its activity. The NK-MAF passed through an ultrafiltration membrane with a nominal cut-off of 10 kDa. This work indicates that NK cell granules contain a small heat-stable peptide capable of activating M phi tumoricidal activity.  相似文献   

17.
CTL (cytotoxic T lymphocytes) and LGL (large granular lymphocytes) exocytose cytoplasmic granules on activation after recognition of their target, releasing granule-associated molecules. We have previously suggested that this process could release immunoregulatory molecules. In this study we investigated whether normal human LGL granules contained a factor regulating different macrophage activity. Human CD3+ LGL cells were generated by activating peripheral blood lymphocytes (PBL) for 10-12 days with recombinant human IL-2 (rhIL-2), and granules were isolated from disrupted cell homogenate by Percoll gradient fractionation. Solubilized granules were tested for macrophage-activating factor (MAF) activity in three different macrophage assays. When M-CSF-differentiated murine bone marrow-derived macrophages were incubated 9 hr with human LGL granules, they were fully activated to lyse the TNF-resistant P815 tumor cells. The granule-MAF showed a synergistic effect with rhIL-1 beta, rmTNF-alpha, and rmIFN-tau in the cytolytic assay. In addition, proteose-peptone-elicited murine peritoneal macrophages profoundly increased H2O2 production after activation with human LGL granules. However, unlike IFN-tau, no increase in peritoneal macrophage Ia antigen expression was detected after incubation with granules. Moreover, granule-MAF suppressed Ia induction by IFN-tau. These results confirm that human CD3+ LGL granules contain a molecule(s) capable of regulating macrophage function.  相似文献   

18.
When human hepatocytes were incubated with low concentrations of ethanol they general chemotactic activity for human neutrophils. Generation of chemotactic activity was dependent upon duration of incubation and concentration of ethanol used. Production of chemotactic activity by ethanol-treated hepatocytes was inhibited completely in the presence of the alcohol dehydrogenase inhibitor 4-methylpyrazole. PMN isolated from rats, in contrast, do not respond chemotactically to the factor released by homologous cells. Preliminary studies indicated that the chemotactic factor is non-polar in nature (perhaps related to leukotriene B4). These results indicate that human hepatocytes, when exposed to ethanol, generate chemotactic factor(s) for human PMN. The occurrence of this phenomenon may explain, in part, the PMN infiltrates observed in human liver during the course of acute alcoholic hepatitis.  相似文献   

19.
Other investigators have previously reported that TNF has been induced from macrophages by bacteria and, more recently, from NK cells by certain tumor cells. Sendai virus has also been reported to induce TNF from macrophages. We report here that an opportunistic fungi, Candida albicans, can also induce TNF, not only from human monocytes, but also from Percoll-fractionated large granular lymphocytes (LGL) which mediate NK function. Incubation of monocytes of LGL with C. albicans for 8 h was sufficient for detection of TNF release and peak induction was observed at 24 h. Induction of TNF from LGL did not require the participation of monocytes or T cells because treatment of the LGL with CD14 or CD15 to eliminate contaminating monocytes and CD3, CD4, or CD8 to eliminate contaminating T cells did not decrease the level of TNF produced from the treated LGL. Small T cells recovered from the denser fractions of the Percoll gradient had no ability to produce TNF, even when 10% monocytes were added to the T cells to provide accessory function. The phenotype of the TNF-producing LGL was CD2+, CD11+, CD16+, NKH1+, LEU7-. The TNF produced by both monocytes and LGL was neutralized by specific monoclonal and polyclonal anti-TNF but not by monoclonal antilymphotoxin. These results indicate that TNF production is a normal response of monocytes and LGL to stimulation by fungi such as C. albicans and that the release of TNF may be related to its ability to activate effector function to control Candida growth, which we have shown earlier for neutrophils with TNF.  相似文献   

20.
A model for monitoring the accumulation of natural killer cell/large granular lymphocytes (NK/LGL) at a site of virus replication was studied by using mice infected i.p. with either lymphocytic choriomeningitis virus (LCMV), murine cytomegalovirus (MCMV), mouse hepatitis virus (MHV), Pichinde virus, or vaccinia virus. An i.p. but not i.v. infection resulted in a localized increase in NK/LGL cell number (a fourfold to greater than 20-fold increase) and augmentation (a 10- to 20-fold increase) of NK cell activity associated with virus-induced peritoneal exudate cell (PEC) populations. An increase in NK/LGL cell number was detected as early as 12 hr postinfection (p.i.) and peaked at 3 days p.i. with MHV. The initial LGL recruited into the peritoneal cavity at 1 to 3 days p.i. were nonadherent to plastic and were demonstrated to have an NK cell phenotype: asialo GM1+, Thy-1.2 +/-, Lyt-2.2-, and J11d-. The peak number of LGL appeared at 7 days after infection with the NK cell-resistant virus, LCMV. This LGL population had been previously demonstrated to contain cytotoxic T lymphocyte/LGL (CTL/LGL) as well as NK/LGL. During an MHV infection the number of LGL decreased between days 3 and 7 p.i., suggesting that the second wave of CTL/LGL was absent. These findings may explain the absence of a good MHV-CTL model. Virus-induced, activated NK/LGL responded to chemotactic signals by migrating in a unidirectional manner across two 5-microns pore size polycarbonate filters during 7 hr in vitro chemotaxis assays. Wash-out fluid obtained from the peritoneal cavity contained chemotactic activity for NK/LGL as well as for other cell types. We conclude that production and/or release of chemotactic factors at sites of virus replication are at least partially responsible for the accumulation of NK/LGL at these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号