首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Renaturation of DNA in the presence of ethidium bromide   总被引:1,自引:0,他引:1  
J R Hutton  J G Wetmur 《Biopolymers》1972,11(11):2337-2348
The rate of renaturation of T2 DNA has been studied as a fuction of ethidium bound per nucleotide of denatured DNA. The Binding constants and number of binding sites for ethidium have been determined by spectral titration for denatured DNA at 55, 65, and 75°C and for native DNA at 65°C in 0.4M Na+. The rate of renaturation of T2 DNA was found to be independentof ethidium binding up to 0.03 moles per mole of nucleotide. Above 0.03 moles, the rate drops off precipitously approaching zero at 0.08 and 0.06 moles bound ethidium per nucleotide at 65°C respectively. A study was also made of the use of bound ethidium fluorescence as a probe for monitoring DNA renaturation reactions.  相似文献   

2.
The utility of formamide in the denaturation and renaturation of DNA has been examined. The melting temperature of duplex DNA is lowered by 0·6°C per per cent formamide. The depression of melting temperature is independent of the GC content. Formamide also increases the width of the thermal transition. Upto 30%, it does not affect the rate of DNA reassociation  相似文献   

3.
S J Miller  J G Wetmur 《Biopolymers》1974,13(12):2545-2551
Fluorescence depolarization was used to measure the rate of renaturation of T2 DNA, which had been modified by chloroacetaldehyde. Rates were measured on DNA samples with 5–15% of the base pairs modified and were found to agree with rates determined by DNA absorbance kinetics at 260 nm. The renaturation rate of a modified T2 DNA was unchanged in the presence of a ninefold abundance of unlabeled calf thymus DNA.  相似文献   

4.
The renaturation kinetics of mitochondrial DNA from the yeast Saccharomyces carlsbergensis have been studied at different temperatures and molecular weights. At renaturation temperatures 25 deg. C below the mean denaturation temperature (Tm) in 1 M-sodium chloride the renaturation rate constant is found to decrease with increasing molecular weight of the reacting strands. This unusual molecular weight dependency gradually disappears with an increase in the renaturation temperature. At a temperature 10 deg. C below the melting point, the rate constant shows the normally expected increase with the square root of the molecular weight. From the renaturation data at this temperature, the molecular weight of the mitochondrial genome is estimated to be about 5·0 × 107. The same size of genome was found from renaturation at low molecular weight and 25 deg. C below the Tm.The sedimentation properties of denatured mitochondrial DNA at pH values 7·0 to 12·5 were used to study the conformation of this DNA in 1 M-sodium chloride. The results obtained support the conclusion from the renaturation studies: that the pieces of denatured mitochondrial DNA with a molecular weight above 2 × 105 to 3 × 105, in 1 M-sodium chloride at 25 deg. C below the mean denaturation temperature are not fully extended random coils. Presumably, interaction between adenine and thymine-rich sequences, which are clustered at certain distances within the molecules, is the molecular basis for these observations.  相似文献   

5.
The thermal stability and renaturation kinetics of DNA have been studied as a function of dimethyl sulfoxide (DMSO) concentration. Increasing the concentration of DMSO lowers the melting temperature of DNA but results in an increased second-order renaturation rate. For example, in a DNA solution containing 0.20M NaCl, 0.01M Tris (pH 8.0), and 0.001M EDTA, the addition of 40% DMSO lowers the melting temperature of the DNA by 27°C and approximately doubles the optimal renaturation rate. The effect of DMSO on the renaturation rate is shown to be at least partially due to its effect on the solution dielectric constant and to be consistent with the polyelectrolyte counterion condensation theory of Manning [(1976) Biopolymers 15 , 1333–1343].  相似文献   

6.
C H Lee  J G Wetmur 《Biopolymers》1972,11(3):549-561
The rate of double helix formation by single stranded Poly A plus Poly U, Poly I plus Poly C, Poly G plus Poly C, and T2 DNA has been investigated as a function of both the length of the reacting strands and temperature. The length dependence of the rate is found to be independent of temperature. All of the reactions studied show a rate approximately proportional to the square root of the length of the shorter of the complementary strands. At or about 30°C below the melting temperature the ribopolymers react with about the same rate. This rate is four to five times slower than DNA renaturation rates. The effect of temperature on ribopolymer reaction rates is interpreted in terms of a steady-state model for helix propagation.  相似文献   

7.
The degree of chromosomal DNA (cDNA) denaturation and renaturation on polytene chromosomes has been measured by UV microspectrophotometry. Also DNA losses occurring upon denaturation have been quantified by Feulgen, gallocyanin-chromalum and UV. It has been observed that denaturation in alkali (0.07 N NaOH at room temperature) and formamide (90% formamide; 0.1 SSC, pH 7.2) at 65 °C removes about 30% of the DNA. Low DNA loss occurs upon denaturation in HCl (0.24 M) at room temperature and 60% formamide: 2 × 10?4 M EDTA (pH 8) at 55 °C. The presence of 4% formaldehyde in the denaturation buffer prevents DNA loss. After denaturation of chromosomes in 0.1 × SSC containing 4% formaldehyde at 100 °C for 30 sec, an hyperchromicity of 39 °C is observed. The denaturation efficiency varies with the denaturation treatment. The percentage reassociation was measured from the difference in the UV absorption of renatured chromosomes and that of denatured chromosomes from the same set. It seems that in our conditions DNA:DNA reassociation does not occur. The efficiency of hybridization is proportional to the denaturation extent of the DNA. However, the entire fraction of DNA which has been denatured is not available for hybridization.  相似文献   

8.
L R Holman  D O Jordan 《Biopolymers》1972,11(8):1661-1684
DNA which has been heat denatured in the presence of Cu++ ions can be completely and rapidly renatured by increasing the ionic strength of the solution above a critical value. A kinetic study of this renaturation recation was carried out by following the associated UV absorbance change and also by following the change in free Cu++ ion concentration by means of a specific Cu++ ion activity electrode. The data obtained could be fitted to first-order kinetics for a considerable extent of the reaction and the rate constant was found to increase with temperature and ionic strength, but to decrease markedly as the bulk viscosity of the solution was increased. At temperatures greater than 5°C the reaction rate depended on the time elapsing between denaturation and the commencement of the renaturation reaction. As there was good agreement between the rate constants obtained by following the decrease in hyperchromism and by following the increase in free Cu++ ion concentration, it is concluded that under the conditions employed, the rate of renaturation is determined by the rate of release of Cu++ ions from the denatured DNA-Cu++ complex.  相似文献   

9.
Low salt concentrations prevent reassociation of separated single strands of DNA, but not the renaturation of partially melted molecules. Rewinding, however, may be delayed (hysteresis) and/or incomplete (partial irreversibility). Long-range fluctuations in base compositioncould account for these observations: (a) the “zippering-up” of a denatured (G + C)-rich section may have to await that of one of its neighbouring (A + T)-rich sections, hence a temperature lag in rewinding; (b) the removal of intramolecular heterogeneities in base composition by fragmentation will give rise to a dispersal of strand-separation temperatures. Conversely, it is shown how a considerable amount of information about the topology of base distribution constraints could be derived from these phenomena.Some yeast ρ? (petite) mitochondrial DNAs, the melting of which is quasidiscontinuous, provide an excellent opportunity for testing the applicability of this new approach to denaturation mapping. Alternating partial denaturation and renaturation with a low rate of temperature change were followed by high-frequency recording of absorbance at 260 nm. A typical experiment (counterion concentration 0.015 m-Na+) carried out on a low-complexity (length of repetitive unit about 3000 base-pairs) ρ? DNA is reported in full detail. Analysis of the data disclosed the existence of two relatively (G + C)-rich clusters separated by long homogeneous stretches of high (A + T) content.The rewinding of ρ? DNAs is a discontinuous process. Both equilibrium and non-equilibrium melting processes were observed. Hysteresis in rewinding, which is restricted to the melting range, increases discontinuously with the extent of unwinding reached prior to cooling. Results are shown to be fully consistent with a model that presupposes that nucleation does not play any part in the renaturation process. They are briefly discussed further in the light of current concepts in the theory of helix-coil transitions of DNA.  相似文献   

10.
H J Li  C Chang  M Weiskopf  B Brand  A Rotter 《Biopolymers》1974,13(4):649-667
Thermal denaturation and renaturation of directly mixed and reconstituted polylysine–DNA, directly mixed polylysine–nucleohistone complexes, and NaCl-treated nucleohistones in 2.5 × 10?4 M EDTA, pH 8.0 have been studied. At the same input ratio of polylysine to DNA, the percent of renaturation of free base pairs in a directly mixed polylysine–DNA complex is higher than that in a reconstituted complex. For a directly mixed complex, the renaturation of free base pairs is proportional to the fraction of DNA bound by polylysine or inversely proportional to the sizes of free DNA loops. A of large amount of renaturation of free base pairs has also been observed for 0.6 M and 1.6 M NaCl-treated nucleohistones. The binding of polylysine to nucleohistone enhances the renaturation of histone-bound base pairs. The percent of renaturation of polylysine–bound base pairs is high and is approximately independent of the extent of binding on DNA by polylysine. This is true in polylysine–DNA complexes prepared either by reconstitution or by directly mixing. It also applies for polylysine–nucleohistone complexes. The model where polylysine-bound base pairs collapse at Tm′ with two complementary strands still bound by polylysine is favored over the model where polylysine is dissociated from DNA during melting. The low renaturation of histone-bound base pairs in nucleo-histone indicates that either histones do not hold two complementary strands of DNA tightly or that histones are fully or partially dissociated from DNA when the nucleo-histone is fully denatured.  相似文献   

11.
Dilatometric measurements were made to determine the change in apparent specific volume φ of DNA resulting from thermal denaturation in neutral solution, φ increased continuously with temperature in the range 10–85°C. No deviations from a monotonically rising curve were observed in the φ versus temperature profile in the region of the melting temperature. The results are interpreted in terms of a partial loss of the preferentially bound DNA hydration shell. The nature of the well known buoyant density difference between native and denatured DNA was investigated by evaluating the densities in a series of cesium salt gradients at constant temperature. Extrapolation of the results to zero water activity indicates that the partial specific volumes of anhydrous native and denatured DNA are equal. The density difference at nonzero water activities is attributed to decreased hydration in the denatured state. The absence of a related change in φ accompanying the denaturation in the dilatometric experiments suggests that the probable volume change associated with loss of bound water during denaturation is accompanied by other compensatory volume effects. The possible nature of these volume effects is discussed.  相似文献   

12.
A spectral study of melting curves of DNA ranging from 73 to 32% AT indicates that the base ratio of sequences melting within DNA are a linear function of temperature. A study of partially denatured DNA by electron microscopy, reversible renaturation and fractionation on hydroxylapatite suggests that the melting curve of DNA represents the melting of sequences which average 3-4 million daltons in length. These sequences appear to be a combination of two areas, one which is high in AT and denatures in the first three-quarters of the melting curve, and one which is high in GC and denatures in the final quarter. The length of these sequences appears to vary between 1.5-6 million daltons.  相似文献   

13.
High-resolution analyzer of thermal denaturation   总被引:1,自引:0,他引:1  
Details are given for the construction of a high-resolution denaturation analyzer for nucleic acid-containing macromolecules. The system contains the following new components: Peltier elements, guided by a linear resistance thermometer for temperature control, electronic microstirrer for quick thermal equilibration within the sample cell, long-term differentiator circuit for converting the absorption function to the first derivative of the rate of change with respect to time.Highly polymerized salmon DNA was melted in standard saline-citrate and showed a hyperchromicity of 45%. The melting velocity passed through a single sharp maximum coinciding with the Tm at 87°C.Ribosomes from Ehrlich asccites tumor cells were thermally denatured in distilled water and showed a 20% hyperchromicity and an overall Tm of 72°C. The denaturation profile was very complex, indicating a sequence of conformational events partially resolved by the instrument.  相似文献   

14.
W. S. Yen  R. D. Blake 《Biopolymers》1980,19(3):681-700
We describe the capabilities of a method for obtaining high-resolution melting profiles of short, homogeneous DNAs using a thermo-differential absorbance technique. The absorbance difference of two identical DNA solutions, raised linearly in temperature and maintained at a constant temperature difference, is monitored using a double-beam spectrophotometer. A specially constructed temperature controller and cell holder enable the temperature of the DNA samples to be controlled and monitored directly. A heating rate of 6.75°C/hr has been found to give reproducible results at ionic strengths > 0.01M. A method of reconstructing the true derivative from experimental data using a Taylor series expansion is described and shown to work well when the difference in temperature between samples is in the range of 0.2°C. Reconstructed derivative profiles are further analyzed by deconvolution into distinct Gaussian components. The melting profile of PM-2 DNA is shown to consist of 14 components, while the much longer lambda DNA yields 55. Related techniques such as data management and analysis for the fractional G·C content of specific domains are also described.  相似文献   

15.
DNA melting temperatures and renaturation rates have been determined for Me2Et2NBr and a series of RMe3NBr and REt3NBr solvents where R is a linear hydrocarbon chain. The point of independence of DNA melting temperature on base composition has been investigated for each solvent system. Renaturation rates are compared with those found in other concentrated salt solutions. Solvent mixtures which accelerate DNA renaturation have also been investigated.  相似文献   

16.
Renaturation of denatured, covalently closed circular DNA   总被引:2,自引:0,他引:2  
The rate of renaturation of denatured, covalently closed, circular DNA (form Id DNA) of the phi X174 replicative form has been investigated as a function of pH, temperature, and ionic strength. The rate at a constant temperature is a sharply peaked function of pH in the range of pH 9 to 12. The position on the pH scale of the maximum rate decreases as the temperature is increased and as the ionic strength is increased. The kinetic course of renaturation is pseudo-first order: it is independent of DNA concentration, but falls off in rate from a first order relationship as the reaction proceeds. The rate of renaturation depends critically on the temperature at which the denaturation is carried out. Form Id, prepared at an alkaline pH at 0 degrees C, renatures from 5 to more than 100 times more rapidly than that similarly prepared at 50 degrees C. Both the heterogeneity in rate and the effect of the temperature of denaturation depend, in part, on the degree of supercoiling of the form I DNA from which the form Id is prepared. However, it is concluded that a much larger contribution to both arises from a configurational heterogeneity introduced in the denaturation reaction. The renaturation rate was determined by neutralization of the alkaline reaction and analytical ultracentrifugal analysis of the amounts of forms I and Id. The nature of the proximate renatured species at the temperature and alkaline pH of renaturation was investigated by spectrophotometric titration and analytical ultracentrifugation. It is concluded that the proximate species are the same as the intermediate species defined by an alkaline sedimentation titration of the kind first done by Vinograd et al. ((1965) Proc. Natl. Acad. Sci. U. S. A. 53, 1104-1111). Observations are included on the buoyant density of form Id and on depurination of DNA at alkaline pH values and high temperatures.  相似文献   

17.
The effects of temperature and ethidium bromide on the banding of heat-denatured DNA was studied during equilibrium centrifugation in density gradients of NaI. Centrifugation at 10 degrees C prevents the partial renaturation of Escherichia coli DNA and Clostridium perfringens DNA that occurs at 20 degrees C. A centrifugation temperature of --5 degrees C is required to prevent renaturation of T7 phage DNA. Ethidium bromide decreases renaturation of Escherichia coli DNA during centrifugation at 20 degrees C and causes a small shift in the buoyant density of both denatured and native DNA. Equilibrium centrifugation at lower temperatures prevents DNA renaturation and permits increased utilization of the large buoyant density difference between native and heat-denatured DNA in gradients of NaI.  相似文献   

18.
A R Haly  J W Snaith 《Biopolymers》1971,10(9):1681-1699
The specific heat, of rat tail tendon at various water contents was measured as a function of temperature. The resulting graphs showed peaks arising from the melting, near 50°C, of helical material in the collagen, and from the melting of absorbed water in the range -40°C to 0°C. The heat of melting of helical material was 11.7 cal per gram of dry tendon. Determination of the heat and temperature of fusion of the absorbed water allowed resolution of the water into four states in the case of tendon before denaturation, and three states after denaturation. The four states are (1) water not freezable on cooling to - 70°C, (2) freezable water with-both heat and temperature of fusion different from the values for ordinary water, (3) freezable water with the heat of fusion of ordinary water, but a different temperature of fusion, and (4) water not distinguished from ordinary water. The fourth state was absent in denatured tendon. The results are discussed in terms of increasing size of clusters of absorbed water molecules.  相似文献   

19.
Using differential scanning calorimetry, the thermal denaturation of calf thymus DNA with different content of water (from 12 to 92%) was investigated. Dependences of melting temperature and enthalpy on the biopolymer hydration degree were established. Within the range of water concentrations from 92 to 50% the values of thermodynamic parameters of denaturation were obtained being in good agreement with the published data. Besides, a calorimetric manifestation of renaturation process at different cooling conditions after denaturation was studied. Special attention was paid to thermal properties of denatured and native DNA in the samples containing only the bound water. The temperature dependence of heat capacity in the denatured samples, which have completely lost their renaturation ability due to the proper thermal treatment, demonstrated a characteristic jump of thermal capacity. The value of this jump has been determined to be equal to 1.0 cal/g. degree C, related to dry weight, and almost not dependent on humidity. Temperature position of the jump (Tg) depends on the content of water which serves as a plasticizer. It is shown that the observed anomaly demonstrates all the properties characteristic of vitrification process in synthetic polymers and proteins. General similarity of thermal properties of the samples of native DNA, containing only the bound water, with those of denatured DNA also indicates a transition from the glassy into the rabber-like state. A possibility of existence of both native and denatured DNA in the glassy state at room temperature for the samples with low humidity (about 25%) has been demonstrated experimentally. It can be suggested that the formation of glassy state at dehydration of native DNA ensures its thermostability and the ability of restoration of its functional properties at a subsequent dehydration.  相似文献   

20.
Solvents which accelerate DNA renaturation rates have been investigated. Addition of NaCl or LiCl to DNA in 2.4M Et4NCl initially increases renaturation rates at 45°C and then leads to a loss of second-order behavior. The greatest accelerations are seen with LiCl and dilute DNA. Volume exclusion by dextran sulfate is the most effective method of accelerating DNA renaturation with concentrated DNA. Addition of dextran sulfate beyond 10–12% in 2.4M Et4NCl fails to increase the acceleration beyond approximately 10-fold. Accelerations of 100-fold may be achieved with 35–40% dextran sulfate in 1M NaCl at 70°C. No other mixed solvent system was found to be more effective, although acceleration may be achieved in solvents containing formamide or other denaturants. The acceleration in 2M NaCl occurs without loss of the normal concentration and temperature dependence of DNA renaturation and is also independent of dextran sulfate concentration if sufficient dextran sulfate is used. Dextran sulfate may be selectively precipitated by use of 1M CsCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号