首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C C Devlin  C M Grisham 《Biochemistry》1990,29(26):6192-6203
The interaction of nucleotides and nucleotide analogues and their metal complexes with Mn2+ bound to both the latent and dithiothreitol-activated CF1 ATP synthase has been examined by means of steady-state kinetics, water proton relaxation rate (PRR) measurements, and 1H and 31P nuclear relaxation measurements. Titration of both the latent and activated Mn(2+)-CF1 complexes with ATP, ADP, Pi, Co(NH3)4ATP, Co(NH3)4ADP, and Co(NH3)4AMPPCP leads to increases in the water relaxation enhancement, consistent with enhanced metal binding and a high ternary complex enhancement. Steady-state kinetic studies are consistent with competitive inhibition of CF1 by Co(NH3)4AMPPCP with respect to CaATP. The data are consistent with a Ki for Co(NH3)4AMPPCP of 650 microM, in good agreement with a previous Ki of 724 microM for Cr(H2O)4ATP [Frasch, W., & Selman, B. (1982) Biochemistry 21, 3636-3643], and a best fit KD of 209 microM from the water PRR measurements. 1H and 31P nuclear relaxation measurements in solutions of CF1 and Co(NH3)4AMPPCP were used to determine the conformation of the bound substrate analogue and the arrangement with respect to this structure of high- and low-affinity sites for Mn2+. The bound nucleotide analogue adopts a bent conformation, with the low-affinity Mn2+ site situated between the adenine and triphosphate moieties and the high-affinity metal site located on the far side of the triphosphate chain. The low-affinity metal forms a distorted inner-sphere complex with the beta-P and gamma-P of the substrate. The distances from Mn2+ to the triphosphate chain are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules or residues from the protein.  相似文献   

2.
Replacement of Mg (II), the natural activator of brain hexokinase (EC 2.7.1.1) by paramagnetic Mn (II) without affecting the physiological properties of the enzyme, has rendered brain hexokinase accessible to investigations by magnetic resonance methods. Based on such studies, a site on the enzyme, where Mn (II) binds directly with high affinity has been identified and characterized in detail. Use ofβ,γ-bidentate Cr (III) ATP as an exchange-inert analogue for Mn (II) ATP has shown that Mn (II) binding directly to the enzyme has no catalytic role but another Mn (II) ion binding simultaneously and independently to the enzyme through the nucleotide bridge participates in enzyme function. However, using this direct binding Mn (II) ion and a covalently bound spin label as paramagnetic probes a beginning has been made in mapping the ligand binding sites of the enzyme. Ultra-violet difference spectroscopy has revealed the presence of at least two glucose 6-phosphate locations on the enzyme one of which presumably is the high affinity regulatory site modulated by substrate glucose. Elution behaviour of the enzyme on a phosphocellulose column suggests that glucose induces a specific phosphate site on the enzyme to which the phosphate bearing regulatory ligands of the enzyme may bind.  相似文献   

3.
Analysis of titration data of EF-Tu-GDP with Mn(II) where free and bound Mn(II) were determined by proton relaxation rate of water (PRR) yields one tight Mn(II) binding site and a value of 2 muM for the dissociation constant of Mn(II) from the EF-Tu-MnGDP complex, K'A. The dissociation constant of manganese nucleotide from the ternary EF-Tu-MnGDP complex, K2, 0.2 muM, was derived from the known value of Ks, the dissociation constant for the binary EF-Tu-GDP complex, and the titration data of the ternary complex with excess GDP as titrant. The apparent number, n, of rapidly exchanging water ligands coordinated to bound Mn(II) in the ternary complex EF-Tu-MnGDP is estimated from the frequency dependence of the PRR of the complex to be approximately 1. The value of n and the values of PRR enhancements, epsilont = 4.3 for EF-Tu-MnGDP at 21 degrees, 24.3 MHZ and epsilont = 4.1 for the ternary GTP complex, are unusually low for protein-Mn-nucleotide complexes. The antibiotic X5108 which induces GTPase activity in EF-Tu-MgGTP was shown to bind stoichiometrically to EF-Tu-MnGDP and thereby change the PRR enhancement of the complex from 4.3 to 7.4. The characteristic broad lines in the EPR spectra of Mn(II) nucleotides are strikingly narrowed upon binding of Mn(II) nucleotides to EF-Tu. The long electron spin relaxation times inferred from the EPR spectra indicate a limited access of solvent water to the first coordination sphere of Mn(II) in its EF-Tu-nucleotide complexes. The frequency dependence of the PRR indicates that the electron spin relaxation time, T1e, is the dominant process modulating the Mn(II)-H2O interaction of the EF-Tu-MnGDP complex and consequently determines the correlation time. The value of T1e, estimated from the PRR experiments to be 2.5 ns at 21 degrees, is consistent with the lower limit of T1e obtained from the line widths of the EPR spectrum of the complex. Upon binding of a stoichiometric quantity of the antibiotic X5108, the EPR spectrum of EF-Tu-MnGDP is severely broadened indicating greater access of solvent water to the manganese coordination sphere, i.e. an opening of the nucleotide binding site as already suggested by the increased PRR enhancement.  相似文献   

4.
R K Gupta  R M Oesterling 《Biochemistry》1976,15(13):2881-2887
Rabbit muscle pyruvate kinase requires two divalent cations per active site for catalysis of the enolization of pyruvate in the presence of adenosine 5'-triphosphate (ATP). One divalent cation is bound directly to the enzyme and forms a second sphere complex with the bound ATP (site 1). The second divalent cation is directly coordinated to the phosphoryl groups of ATP and does not interact with the enzyme (site 2). The essential role of the divalent cation at site 1 is shown by the requirement for Mg2+ or Mn2+ for the enolization of pyruvate in the presence of the substitution inert Cr3+-ATP complex. The rate of detritiation of pyruvate shows a hyperbolic dependence of Mn2+ concentration in the presence of high concentrations of enzyme and Cr3+-ATP. A dissociation constant for Mn2+ from the pyruvate kinase-Mn2+-ATP-Cr3+-pyruvate complex of 1.3 +/- 0.5 muM is determined by the kinetics of detritiation of pyruvate and by parallel Mn2+ binding studies using electron paramagnetic resonance. The essential role of the divalent cation at site 2 is shown by the sigmoidal dependence of the rate of detritiation of pyruvate on Mn2+ concentration in the presence of high concentrations of enzyme and ATP yielding a dissociation constant of 29 +/- 9 muM for Mn2+ from site 2. This value is similar to the dissociation constant of the binary Mn-ATP complex (14 +/- 6 muM) determined under similar conditions. The rate of detritiation of pyruvate is proportional to the concentration of the pyruvate kinase-Mn2+-ATP-Mn2+-pyruvate complex, as determined by parellel kinetic and binding studies. Variation of the nature of the divalent cation at site 1 in the presence of CrATP causes only a twofold change in the rate of detritiation of pyruvate which does not correlate with the pKa of the metal-bound water. Variation of the nature of the divalent cation at both sites in the presence of ATP causes a sevenfold variation in the rate of detritiation or pyruvate that correlates with the pKa of the metal-bound water. The greater rate of enolization observed with CrATP fits this correlation, indicating that the electrophilicity of the nucleotide bound metal (at site 2) determines the rate of enolization of pyruvate.  相似文献   

5.
Measurements of the relaxation rate of water protons (PRR) have been used to study the interaction of yeast phosphoglycerate kinase with the manganous complexes of a number of nucleotides. The results indicate that phosphoglycerate kinase belongs to the same class of enzymes as creatine kinase, adenylate kinase, formyltetrahydrofolate synthetase, and arginine kinase, with maximal binding of metal ion to tne enzyme in the presence of the nucleotide substrate. However, an analysis of titration curves for a number of nucleoside diphosphates (ADP, IDP, GDP) showed that there is a substantial synergism in binding of the metal ion and nucleotide to the enzyme in the ternary complex. The metal-substrate binds to the enzyme approximately two orders of magnitude more tightly than the free nucleotide; Other evidence for an atypical binding scheme for Mn(II)-nucleoside diphosphates was obtained by electron paramagnetic resonance (EPR) studies; the EPR spectrum for the bound Mn(II) in the enzyme-MnADP complex differed substantially from those obtained for other kinases. An identical EPR spectrum is observed with the MnADP complex with the rabbit muscle enzyme as with the yeast enzyme. In contrast, the dissociation constant for the enzyme-MnATP complex is approximately fourfold lower than that for enzyme-ATP, and there are no substantial changes in the electron paramagnetic resonance spectrum of MnATP2- when the complex is bound to phosphoglycerate kinase. A small but significant change in the PRR of water is observed on addition of 3-phosphoglycerate (but not 2-phosphoglycerate) to the MnADP-enzyme complex. However, addition of 3-phosphoglycerate to enzyme-MnADP did not influence the EPR spectrum of the enzyme-bound Mn(II).  相似文献   

6.
Conformational properties of the active site of formyltetrahydrofolate synthetase from Clostridium cylindrosorum have been examined by EPR spectroscopy and by solvent proton relaxation rate (PPR) studies of manganous complexes with the enzyme. Ternary enzyme-Mn-nucleotide complexes give EPR spectra which are very similar to those for the binary Mn-nucleotide complexes. However, upon addition of tetrahydrofolate to form the quaternary complexes, enzyme-MnADP-tetrahydrofolate and enzyme MnATP-tetrahydrofolate the EPR line shapes are changed substantially. Spectra for the quaternary complexes exhibit narrow line widths, and the splitting patterns are characteristic of a slightly asymmetric electronic environment for the bound Mn(II). Addition of formate to the ADP quatenary complex induces a further significant narrowing of the EPR line widths, although in the absence of tetrahydrofolate, formate does not influence the EPR spectrum for the enzyme-MnADP species. Both Pi and nitrate cause changes in the EPR patterns for the higher complexes of the enzyme which involve both ADP and tetrahydololate. However, the Pi effect is not influenced by the presence of formate whereas the characteristic effect of nitrate is potentiated only when formate is present. EPR sectra for the thernary complex with the beta, gamma-methylene analog of ATP App(CH2)p differ significantly from spectra for the binary App(CH)p complex is not influenced by further additions of tetrahydrofolate and of tetrahydorfolate and formate. The failure of spectra for the App(CH)p complex to respond to additions of the other substrates for the reaction is in marked contrast to the behavior found for the natural nucleotide substrates and is tentatively attributed to the lack of a protein-mediated interaction between the nucleotide and tetrahydrofolate binding sites in the analog complex. The frequency dependence of solvent PRR in the presence of the various complexes allows an estimate of the correlation times for electron-nuclear dipolar interaction and thereby the extent of hydration of the bound Mn(II) among the various complexes..  相似文献   

7.
The interactions of substrates with succinyl-CoA synthetase were investigated by measuring the enhancement of the longitudinal water proton relaxation rate (PRR) due to Mn(II) to the enzyme substrate complexes. The binding of Mn(II) to the enzyme was investigated by EPR. The effects of phosphorylating the enzyme on its interactions with Mn(II) and substrates were also examined. Mn(II) binds weakly to dephosphosuccinyl-CoA synthetase (E) at approximately four sites with a KD value of 0.14 mM, and the PRR enhancement of the complex, epsilonb, at 24.3 MHZ and 25 degree is 18.8. The phosphoenzyme (E-P) binds Mn(II) more strongly at approximately four sites with a KD value of 0.74 mM, and only a small change in epsilonb to 18.1. Mm ADP binds to E at one or two sites with K2 = 0.5 muM, the values of epsilont for the ternary E-Mn-ADP complex is 17.0. Free ADP binds about 126 times more weakly to the enzyme than does Mn-ADP. PRR titrations indicated that the values of epsilont for the ternary E-Mn-ADP and (E-P)-Mn-ADP complexes are about the same. Mn-ATP binds very weakly or not at all to (E-P)-Mn.Formation of the ternary complexes of CoA with E-Mn or (E-P)-Mn could be followed by small but significant increases in the PRR enhancement. No ternary complex with succinate could be detected since the addition of succinate had no effect on the PRR enhancement. However, a large decrease in enhancement, at least 2-fold, was observed upon addition of both succinate and CoA. An increase in the PRR enhancement was produced by the interaction of succinyl-CoA with the E-Mn complex. Upper limits of the dissociation constants for CoA from the quaternary E-Mn-ADP-succinate-CoA complex and for succinyl-CoA from the quaternary E-Mn-ADP-succinyl-CoA complex are 390 and 560 muM, respectively. The epsilon values for the quaternary and quinary complexes are 6.4 and 3.1, respectively. The successive occupation of substrate binding sites of succinyl-CoA synthetase produces alterations in the molecular dynamics or in the conformation of the active site (or both), which are accompanied by progressive decreases in the values of epsilon. Thus, the physical parameter used in these studies relects the previously observed catalytic properties of the enzyme system inasmuch as the catalytic function of succinyl-CoA synthetase is potentiated by substrate binding, and catalytic avtivity in partial reactions is maximized as binding sites are successively occupied.  相似文献   

8.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.  相似文献   

9.
R Koren  S Mildvan 《Biochemistry》1977,16(2):241-249
The interaction of Mn2+, substrates and initiators with RNA polymerase have been studied by kinetic and magnetic resonance methods. As determined by electron paramagnetic resonance, Mn2+ binds to RNA polymerase at one tight binding site with a dissociation constant less than 10 muM and at 6 +/- 1 weak binding sites with dissociation constants 100-fold greater. The binding of Mn2+ to RNA polymerase at both types of sites causes an order of magnitude enhancement of the paramagnetic effect of Mn2+ on the longitudinal relaxation rate of water protons, indicating the presence of residual water ligands on the enzyme-bound Mn2+. A kinetic analysis of the Mn2+-activated enzyme with poly(dT) as template indicates the substrate to be MnATP under steady-state conditions in the presence or absence of the initiator ApA. ATP and UTP interact with the tightly bound Mn2+ to form ternary complexes with approximately 50% greater enhancement factors. The dissociation constant of MnATP from the tight Mn2+ site as determined by longitudinal proton relaxation rate (PRR) titration (4.7 muM) is similar to the KM of MnATP in the ApA-initiated RNA polymerase reaction (10 +/- 3 muM) but not in the ATP-initiated reaction (160 +/- 30 muM). Similarly, the dissociation constant of the substrate MnUTP from the tight Mn2+ site (90 muM) is in agreement with the KM of MnUTP (101 +/- 13 muM) when poly[d(A-T)]-poly[d(A-T)] is used as template, indicating the tight Mn2+ site to be the catalytic site for RNA chain elongation. Manganese adenylyl imidodiphosphate (MnAMP-PNP) has been found to be a substrate for RNA polymerase. It has the same affinity as MnATP for the tight site but, unlike the results obtained with MnATP, the enhancement is decreased by 43% in the enzyme Mn-AMP-PNP complex. These results suggest that the enzyme-bound Mn2+ interacts with the leaving pyrophosphate group. The initiators ApA and ApU and the inhibitor rifamycin interact with the enzyme-Mn2+ complex producing small (15-20%) decreases in the enhancement. The dissociation constant of ApA estimated from PRR data (less than or equal to 1.5 muM) agrees with that determined kinetically (1.0 +/- 0.5 muM) as the concentration of ApA required to produce half-maximal change in the KM of MnATP. In the presence of the initiation specific reagents ApA, ApU, or rifamycin, the affinity of the enzyme-Mn complex for ATP or UTP shows little change. However, ATP and UTP no longer increase the enhancement factor of the tightly bound Mn2+ but decrease it by 30-55%, indicating a change in the environment of the Mn2+-substrate complex on the enzyme when the initiation site is either occupied or blocked. Although the role of the six weak Mn2+ binding sites is not clear, the presence of a single tightly bound Mn2+ at the catalytic site for chain elongation which interacts with the substrate reinforces the number of active sites as one per molecule of holoenzyme and provides a paramagnetic reference point for further structural studies.  相似文献   

10.
The interaction of CrATP, a stable, substitution-inert, paramagnetic tridentate complex of ATP, with muscle pyruvate kinase has been studied by measuring the effects of CrATP on the kinetics of pyruvate enolization and on the longitudinal nuclear magnetic relaxation rate (1/T1) of the protons of water and the protons and carbon atoms of pyruvate to investigate the existence and activity of bimetallic enzyme-M(II)-CrATP complexes and to determine intersubstrate distances on a kinase. The paramagnetic effect of CrATP on 1/T1 of water protons is enhanced upon complexation with the enzyme. Titrations of the enzyme with CrATP yielded characteristic enhancements of 1/T1 for the binary enzyme-CrATP, ternary enzyme-Mg(II)-crATP, and quaternary enzyme-Mg(II)-crATP-pyruvate complexes of 3.5, 1.7, and 1.2 and dissociation constants of CrATP of 400, 200, and 200 muM, respectively. From the frequency dependence of 1/T1, the number of fast exchanging water protons in the coordination spheres of Cr(III) is approximately 6 in CrATP and in both the ternary enzyme-Mg(II)-CrATP complex and the quaternary enzyme-Mg(II)-CrATP-pyruvate complex. The paramagnetic effect of enzyme-bound Mn(II) on 1/T1 of water protons decreases upon the addition of CrATP. Titration of the binary enzyme-Mn(II) complex with CrATP decreases the characteristic enhancement due to Mn(II) from 24 +/- 3 to 6 +/- 1. Titration of the ternary eznyme-Mn(II)-pyruvate complex with CrATP decreases the enhancement from 6 +/- 1 to 0.5 +/- 0.1. The affinity of the enzyme for Mn(II) is increased 2-fold upon binding of CrATP as indicated by decreases in the amplitude of the EPR spectrum of free Mn(II). The dissociation constants of CrATP from the enzyme-Mn(II)-CrATP complex, the enzyme-CrATP-pyruvate complex, and the enzyme-Mn(II)-CrATP-pyruvate complex are all 200 muM. The observed titration behavior, the characteristic enhancement values, the tightening by Mg(II) of the binding of CrATP to the enzyme, and the tightening of the binding of Mn(II) to the enzyme by CrATP establish the existence of enzyme-M(II)-CrATP and enzyme-M(II)-CrATP-pyruvate complexes containing two cations, Mg(II) or Mn(II) and Cr(III), at the active site.  相似文献   

11.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

12.
Binding of ADP to rat brain hexokinase provided protection against inactivation of the enzyme by glutaraldehyde or by chymotryptic digestion. Graphical analysis of the inactivation experiments was, in both cases, consistent with the existence of a single ADP binding site and a Kd ≈ 3mM for the hexokinase-ADP complex. Both Cibacron Blue F3GA and tetraiodofluorescein, previously found to have a general affinity for nucleotide binding sites, were competitive (vs. ATP) inhibitors of the enzyme, suggesting that they bound only to the site occupied by the nucleotide substrate, ATP. While alternate interpretations cannot be excluded, it is felt that these results are most consistent with the view that there is a single nucleotide binding site on the enzyme. They thereby may serve to stimulate a search for alternative explanations for the complex inhibitory pattern of ADP which had previously been attributed to the existence of two ADP binding sites on the enzyme (J. Ning, D.L. Purich, and H.J. Fromm, J. Biol. Chem. 244, 3840–3846 (1969).  相似文献   

13.
The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.  相似文献   

14.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

15.
Trichlorodiethylenetriaminecobalt (III), [CoCl3dien], which is provided with three good leaving ligands and, hence, capable of binding ATP in a characteristic mode, accelerated effectively and specifically hydrolysis of ATP to ADP and Pi. A kinetic study of the reaction indicated that the rate of hydrolysis was first order with respect to the concentration of ATP in the presence of an excess of [CoCl3dien]. The rate constant was calculated to be 1.05 X 10(-2) min-1 at pH 4.0 (50 degrees C), corresponding to a catalysis of the hydrolysis of ATP by a factor of 150. The complex possessing one good leaving ligand, chlorotetraethylenepentaminecobalt(III), and that having two of them in trans-position, dichlorobis(dimethylglyoximato)cobalt(III) only slightly enhanced the hydrolysis of ATP. Dichloro-cis-alpha- and dichloro-cis-beta-triethylenetetraminecobalt(III) complexes, which have two good leaving ligands and allow chelation of ATP in their coordination sphere, exhibited fairly good activities, although the hydrolysis reactions of ATP occurred in two modes as ATP leads to ADP + Pi and ATP leads to AMP + PPi. The mechanism of ATP-hydrolysis reaction with [CoCl3dien] was also discussed on the basis of the kinetic data.  相似文献   

16.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

17.
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3'-phosphate 5'-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp(136), which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.  相似文献   

18.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

19.
Hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate by using ATP as a phosphoryl donor. Recently, we identified and characterized an ATP-dependent hexokinase (StHK) from the hyperthermophilic archaeon Sulfolobus tokodaii, which can phosphorylate a broad range of sugar substrates, including glucose, mannose, glucosamine, and N-acetylglucosamine. Here we present the crystal structures of StHK in four different forms: (i) apo-form, (ii) binary complex with glucose, (iii) binary complex with ADP, and (iv) quaternary complex with xylose, Mg(2+), and ADP. Forms i and iii are in the open state, and forms ii and iv are in the closed state, indicating that sugar binding induces a large conformational change, whereas ADP binding does not. The four different crystal structures of the same enzyme provide "snapshots" of the conformational changes during the catalytic cycle. StHK exhibits a core fold characteristic of the hexokinase family, but the structures of several loop regions responsible for substrate binding are significantly different from those of other known hexokinase family members. Structural comparison of StHK with human N-acetylglucosamine kinase and other hexokinases provides an explanation for the ability of StHK to phosphorylate both glucose and N-acetylglucosamine. A Mg(2+) ion and coordinating water molecules are well defined in the electron density of the quaternary complex structure. This structure represents the first direct visualization of the binding mode for magnesium to hexokinase and thus allows for a better understanding of the catalytic mechanism proposed for the entire hexokinase family.  相似文献   

20.
The binding of glucose, ADP and AdoPP[NH]P, to the native PII dimer and PII monomer and the proteolytically-modified SII monomer of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from Saccharomyces cerevisiae was monitored at pH 6.7 by the concomitant quenching of protein fluorescence. The data were analysed in terms of Qmax, the maximal quenching of fluorescence at saturating concentrations of ligand, and [L]0.5, the concentration of ligand at half-maximal quenching. No changes in fluorescence were observed with free enzyme and nucleotide alone. In the presence of saturating levels of glucose, Qmax induced by nucleotide was between 2 and 7%, and [L]0.5 was between 0.12 and 0.56 mM, depending on the nucleotide and enzyme species. Qmax induced by glucose alone was between 22 and 25%, while [L]0.5 was approx. 0.4 mM for either of the monomeric hexokinase forms and 3.4 for PII dimer. In the presence of 6 mM ADP or 2 mM AdoPP[NH]P, Qmax for glucose was increased by up to 4% and [L]0.5 was diminished 3-fold for hexokinase PII monomer, 6-fold for SII monomer, and 15-fold for PII dimer. The results are interpreted in terms of nucleotide-induced conformational change of hexokinase in the presence of glucose and synergistic binding interactions between glucose and nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号