首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kelp forests are highly productive and species‐rich benthic ecosystems in temperate regions that provide biogenic habitat for numerous associated species. Diverse epifaunal communities inhabit kelp sporophytes and are subject to variations in the physical environment and to changes experienced by the kelp habitat itself. We assessed seasonal variations in epifaunal invertebrate communities inhabiting giant kelps, Macrocystis pyrifera, and their effects on this seaweed. Six seasonal samplings were conducted over a year at an upwelling‐dominated site in northern‐central Chile where physical conditions are known to fluctuate temporally. More than 30 taxa were identified, among which peracarid crustaceans stood out in both diversity and abundance. Species richness and abundance differed among sporophyte sections (holdfast and fronds) and throughout the year. The frond community was dominated by two grazers (the amphipod Peramphithoe femorata and the isopod Amphoroidea typa), while suspension feeders, grazers, and omnivores (the amphipod Aora typica, the isopod Limnoria quadripunctata, and polychaetes) dominated the holdfasts. Abundances of the dominant species fluctuated throughout the year but patterns of variation differed among species. The most abundant grazer (P. femorata) had highest densities in summer, while the less abundant grazer (A. typa) reached its peak densities in winter. Interestingly, the area of kelp damaged by grazers was highest in autumn and early winter, suggesting that grazing impacts accumulate during periods of low kelp growth, which can thus be considered as ‘vestiges of herbivory past.’ Among the factors determining the observed seasonal patterns, strong variability of environmental conditions, reproductive cycles of associated fauna, and predation by fishes vary in importance. Our results suggest that during spring and early summer, bottom‐up processes shape the community structure of organisms inhabiting large perennial seaweeds, whereas during late summer and autumn, top‐down processes are more important.  相似文献   

2.
Williams  R. 《Hydrobiologia》1988,165(1):151-159
Selected epifaunal and infaunal species from three sites of differing substrate were examined over a 12 month period. The characteristic species comprising the epifauna at each site were found to be dictated by substrate type whereas the infaunal amphipods and tanaids were relatively similar between sites. No distinct seasonality of abundance was noted for the macroscopic species; however, the infaunal amphipods and tanaids exhibited distinct seasonal cycles of abundance. These temporal changes in population size can be correlated with the seasonal cycle of primary producers. Females, of each of the infaunal species that were monitored, exhibited brood protection throughout the winter period and released juveniles at times that coincided with the period of high primary productivity. All species exhibited properties characteristic of K-strategists; a result of the very stable and predictable nature of the antarctic benthic environment.  相似文献   

3.
The role of microhabitat in structuring epifaunal communities on four corals of varying morphology in the genus Acropora (A. millepora, A. hyacinthus, A. pulchra, A. formosa) was determined on two fringing reefs in the central Great Barrier Reef. Greater abundance and species richness of epifauna on tightly branched coral species in comparison to their rarity or absence on open-branched species suggests that protection afforded by complex habitats is important in structuring coral epifaunal communities. Within species, neither total colony space nor live surface area of corals was correlated with either the abundance or species richness of associated epifauna. However, space between branches significantly affected the size of Tetralia crabs associated with different coral species. Patterns in the size distribution of Tetralia on two species of Acropora suggest that crabs select coral hosts according to branch spacing, changing host species as they grow larger.  相似文献   

4.
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Strong tidal currents flowing over mobile sediment give rise to migrating bedforms termed megaripples and sandwaves. For colonizing epifauna a megaripple field is a habitat subject to repeated disturbance as advancing megaripples bury all epifauna in their path. Eight epifaunal species occur in a megaripple field in tipper Spencer Gulf, South Australia. The stalked bryozoan Lanceopora obliqua is an r-strategist and occurs patchily in high densities. An ascidian Polycarpa pedunculata, probably a K-strategist, and a group of four species of articulated bryozoans, have much lower population densities which are predictable according to the frequency of disturbance. Other species occur in low, but variable densities. Some species show adaptations in morphology, behaviour or life history patterns which favour survival in this unusual environment.  相似文献   

6.
Seaweeds are a refuge from stressful conditions associated with life on rocky intertidal shores, and there is evidence that different macrophytes support different assemblages of mobile epifauna. Introduction of non-indigenous macroalgae may have a great impact on associated epifaunal assemblages and ecosystem processes in coastal areas. Previous studies have reported conflicting evidences for the ability of epifauna to colonize non-indigenous species. Here, we analyzed epifaunal assemblages associated with three species of macroalgae that are very abundant on intertidal shores along the Galician coast: the two native species Bifurcaria bifurcata and Saccorhiza polyschides and the invasive species Sargassum muticum. We collected samples of each species from three different sites at three different times to test whether variability of epifaunal assemblages was consistent over space and time. Epifaunal assemblages differed between the three macroalgae. Results suggested that stability and morphology of habitat played an important role in shaping the structure of epifaunal assemblages. This study also showed that the invasive S. muticum offered a suitable habitat for many invertebrates.  相似文献   

7.
The mobile fauna associated with two sympatric kelp species with different holdfast morphology (Saccorhiza polyschides and Laminaria hyperborea) was compared to test for differences in the assemblage structure of holdfast-associated mobile epifauna. A total of 24,140 epifaunal individuals were counted from 30 holdfasts of each kelp species. Overall epifaunal abundances exceeded faunal abundances previously reported from holdfasts of other kelps. Three taxonomic groups, Amphipoda, Mollusca, and Polychaeta, accounted for ca. 85% of all individuals. Total abundances increased with the amount of habitat available, quantified either as the volume or the area provided by the holdfasts. The multivariate structure of the epifaunal assemblage did not differ between holdfasts of the two kelp species. However, epifaunal assemblages responded differentially to the habitat attributes provided by each type of kelp holdfast: multivariate variation in the assemblage structure of epifauna was mostly explained by holdfast area and volume for L. hyperborea, and by the surface-to-volume ratio for S. polyschides holdfasts. Therefore, the physical attributes of biogenic habitats, here kelp holdfasts that better predict patterns in the assemblage structure of associated fauna can differ according to their different physical morphology, even though the overall assemblage structure of associated fauna was similar.  相似文献   

8.
Epifauna living on sublittoral seaweeds around Cyprus   总被引:3,自引:2,他引:1  
Russo  Anthony R. 《Hydrobiologia》1997,344(1-3):169-179
Macroepifauna living on sublittoral seaweeds were counted,identified and compared among six locations in Cyprus. Mollusks,amphipods, and polychaetes were the major taxa represented. Thedominant alga was Cystoseira barbata which was present at 4of 6 stations and ranged in wet weight from 1–2 kg m-2 ofbottom. Percent cover of C. barbata ranged from 25 to 90%.Other dominant algae were Laurencia obtusa, Padinapavonica, and Jania rubens. The distribution of epifaunaabundance, species composition, and species richness varied amonglocations. Total epifauna abundance ranged from 1000 to 2250animals m-2. The abundance of epifauna per gram of plant wassignificantly lower on C. barbata than on the other algalspecies. The total epifauna species richness was more related tolocal algal plant diversity than to plant biomass.  相似文献   

9.
Seagrass habitat structure influences epifaunal density, diversity, community composition and survival, but covariation of structural elements at multiple scales (e.g., shoot density or biomass per unit area, patch size, and patch configuration) can confound studies attempting to correlate habitat structure with ecological patterns and processes. In this study, we standardized simulated seagrass shoot density and bed area among artificial seagrass beds in San Diego Bay, California, USA to evaluate the singular effect of seagrass bed configuration (“patchiness”) on the density and diversity of seagrass epifauna. Artificial seagrass beds all were 1 m2, but were composed of a single large patch (“continuous” treatment), four smaller patches (“patchy” treatment), or 16 very small patches (“very patchy” treatment). We allowed epifauna to colonize beds for 1 month, and then sampled beds monthly over the next 3 months. Effects of seagrass bed patchiness on total epifaunal density and species-specific densities were highly variable among sampling dates, and there was no general trend for the effects of fragmentation on epifaunal densities to be positive or negative. Epifaunal diversity (measured as Simpson's index of diversity) was highest in very patchy or patchy beds on two out of the three sampling dates. Very patchy beds exhibited the highest dissimilarity in community composition in the first two sampling periods (August and September), but patchy beds exhibited the highest dissimilarity in the third sampling period (October). Our results indicate that seagrass patch configuration affects patterns of epifaunal density, diversity, and community composition in the absence of covarying bed area or structural complexity, and that patchy seagrass beds may be no less valuable as a habitat than are continuous seagrass beds. The spatial pattern employed when harvesting or planting seagrass may influence epifaunal habitat use and should be a key consideration in restoration plans.  相似文献   

10.
The epifauna associated with two of the most common species of kelp in the Arctic, Laminaria digitata (Hudson) Lamouroux, 1813 and Saccharina latissima (Linnaeus) Lane, , Mayes, Druehl and Saunders 2006 [synonym: L. saccharina (Linnaeus) Lamouroux, 1813] were examined in Kongsfjorden, Svalbard. The aim of this study was to test whether species richness of epifauna was influenced by seasonality of recruitment supply (spring and summer) or by age of the substrate (lamina). From 20 algae specimens (ten—L. digitata, ten—S. latissima), a total of 27 epifaunal taxa were identified with bryozoans as the most species-rich group. Total species richness ranged from one to nine species per lamina. No significant difference in species richness was observed between the two kelp species. In both macroalgae, more epifauna taxa were registered on lamina in May (mean 6) than in August (mean 3). This indicates that the time chosen for sampling had a significant impact on the species richness pattern. The number of epifaunal species was significantly negatively correlated with increasing age of the lamina. There are indications that diversity of the epifauna on lamina is influenced to a large extent by substrate (lamina) surface area, environmental stress and the presence of meroplankton in the water column.  相似文献   

11.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

12.
Relationships between algal epiphytes and epifaunal invertebrates (amphipods, molluscs and polychaetes) occurring within meadows of the seagrasses Posidonia sinuosa and Amphibolis griffithii were compared along the south west coast of Western Australia. Although the seagrasses are very different structurally, many species of algal epiphytes and epifaunal grazers were common to both. However, meadows of Amphibolis supported a greater number of both algal epiphyte and epifaunal species. The long-lived stems of Amphibolis supported a larger biomass of algal epiphytes and grazers than did the leaves of either Posidonia or Amphibolis. The densities and biomass of epifauna were variable but on a comparison adjusted to the biomass of seagrass, both the density and biomass of the taxonomic groups were similar between seagrass species except that the density of grazing gastropods and the biomass of polychaetes were greater in Amphibolis (by 238% and 252%, respectively). Nested analyses of variance (ANOVA) indicated that variations in plant and animal biomass differed at all spatial scales (sites, meadows within sites and replicates) and the pattern was inconsistent amongst biota. However, a significant proportion of the variability occurred between replicate samples. Canonical correlation and multiple regression analyses indicated that associations between algal epiphytes and epifauna were also inconsistent and differed between seagrass species. These patterns highlight the importance of seagrass species and structural complexity in affecting both the epiphytic and grazer community. The importance of spatial scales at which seagrasses and their associated communities are sampled are equally important because of the differing levels of spatial patchiness.  相似文献   

13.
We compared the mollusc assemblages of planted mono-specific Rhizophora mangroves of known different ages. As forest age increased, there was a shift in species composition, abundance and biomass of mollusc assemblages for all faunal types (infauna, epifauna and arboreal fauna). This shift was correlated with the changes in vegetation (increasing forest cover and above-ground biomass) and sediment characteristics (increasing organic matter and decreasing sand content). Some species dominate in young plantations (<10 years old; Pirenella cingulata) and in intermediate plantations (10–15 years old; Nerita polita), while other species only occur in mature plantations and natural mangrove stands (>15 years; Terebralia sulcata, Nerita planospira). The two former groups of species are mostly species of infaunal and epifaunal habitats, while the latter group is mainly composed of arboreal species. The shift in mollusc species composition and dominance may serve as a useful indicator of restoration patterns in planted mangroves.  相似文献   

14.
15.
Changes in invertebrate body size-distributions that follow loss of habitat-forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates (‘epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size-distribution. Ongoing degradation of reef habitats that affect invertebrate size-distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log-linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro-ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes.  相似文献   

16.
We studied seasonal variation in bird assemblages during two years in the coastal woodlands of the reserve, 'El Destino', Buenos Aires Province, Argentina. Higher bird density was recorded during spring, and lower one during autumn, but species richness did not show changes during the annual cycle. Seasonal variation in abundance and species composition was recorded for the frugivore-insectivore and the granivore guilds, however, not for the insectivores. As winter is not harsh, insectivorous species might not be faced with food shortage. In contrast, the abundance of frugivorous-insectivorous and granivorous species appeared to be related with fluctuations in their food resources.  相似文献   

17.
In 1997 and 1998, surveys were performed to compare species composition, abundance and diversity of non-attached epifauna (>1 mm) in low intertidal and adjacent shallow subtidal zones of three mussel beds (Mytilus edulis L.) near the island of Sylt in the North Sea. The community structure was similar when compared within tidal zones: no significant differences in species numbers and abundances were recorded between locations and between years. A comparison between tidal zones, however, revealed higher diversity, species densities and total species numbers in the subtidal (per 1,000 cm2: H =2.0±0.16; 12 ±1 species density; 22 species) than the intertidal zone (per 1,000 cm2: H =0.7±0.27; 6±2 species density; 19 species). Abundances significantly dropped with increasing submergence from 2,052 (±468) m–2 to 1,184 (±475) m–2. This was mainly due to significantly higher densities of both juvenile periwinkles, Littorina littorea, and crabs, Carcinus maenas, in intertidal mussel beds. However, many less dominant species were significantly more abundant in subtidal mussel beds. This study revealed that in the non-attached epifaunal community of mussel beds the tidal level effect within metres was strong, whilst the spatial variability in a much wider (kilometre) range but the same tidal level was negligible. The high epifaunal diversity in the subtidal zone suggests that the protective measures for mussel beds against the effects of mussel fishery should be extended from the intertidal to the subtidal zone, if the integrity of the mussel bed community in the Wadden Sea National Park is to be maintained. Electronic Publication  相似文献   

18.
The spatial and seasonal distribution of microcrustacean zooplankton of Lake Tana (Ethiopia) was monthly studied for 2 years. Concurrently, various environmental parameters were measured and related to zooplankton distribution. Canonical Correspondence Analysis (CCA) was used to estimate the influence of abiotic factors and chlorophyll a content in structuring the zooplankton assemblage. Among the environmental factors, zooplankton abundance correlated most strongly with turbidity. Turbidity was negatively correlated with species abundance, especially for Daphnia spp. and to the least extent for Diaphanosoma spp. Analysis of variance (ANOVA) was used to determine spatial (littoral, sublittoral and pelagic zone) and temporal (four seasons) variation in zooplankton abundance. We observed significant temporal differences in zooplankton abundance, with highest densities during dry season (November–April). Only cladocerans showed significant differences in habitat use (highest densities in the sublittoral zone). %  相似文献   

19.
Coral nurseries are commonly employed to generate coral material for reef restoration projects, but observations of epifaunal organisms utilising the nurseries for food and shelter indicate that they can also provide important functions beyond that of coral propagation. To examine the level of biodiversity that can be supported by coral nurseries, and investigate if epifaunal communities were influenced by the presence of live coral tissue, we compared the abundance, diversity and community composition of mobile invertebrate epifauna associated with live and dead fragments of three coral species (Pocillopora acuta, Echinopora lamellosa, Platygyra sinensis) that were reared in an in situ nursery. A total of 418 mobile invertebrates spanning 63 taxa were recorded from 22 coral colonies. The three coral species hosted significantly different epifaunal communities, most likely a consequence of the difference in growth forms of the coral hosts. Significant differences in epifaunal communities were only observed between live and dead colonies of P. acuta, indicating that resource provisioning in this species is particularly influenced by the presence of live tissue. Our findings showed that coral nurseries can support a range of mobile invertebrates and function as tools to conserve threatened mobile invertebrates. This ecological function is under-studied and should be assessed in restoration programs for the conservation of corals and associated fauna.  相似文献   

20.
Declines of habitat‐forming organisms in terrestrial and marine systems can lead to changes in community‐wide biodiversity. The dominant habitat‐forming macroalga Phyllospora comosa (Fucales) went locally extinct along the metropolitan coastline of Sydney in the 1980s. However, the consequences of that disappearance to the associated faunal diversity in these habitats, and whether Phyllospora is ecologically redundant with respect to the biodiversity it supports, are not known. Efforts are underway to restore Phyllospora, and the capacity to enhance local biodiversity is an important component of the rationale for restoration. We compared epifaunal diversity (abundances and composition) between Phyllospora and two other co‐occurring habitat‐forming algae, the kelp Ecklonia radiata and the fucoid Sargassum vestitum, and determined whether Phyllospora transplanted to Sydney developed different epifaunal communities than undisturbed thalli and controls. Where the 3 species naturally co‐occurred, Phyllospora supported different abundances of taxa than Ecklonia and Sargassum, as well as different composition at finer scales, which suggests that this species is not completely redundant and that its disappearance may have affected local biodiversity. Similarly, assemblages on transplanted Phyllospora differed from those on Ecklonia and Sargassum at restored sites, but did not always resemble assemblages from extant natural Phyllospora populations, even 18 months after transplantation. These experiments indicate that restoration of key habitat‐forming seaweeds not only recovers the algal species but also reduces risks of losing habitat diversity for epifauna and their consumers. However, restoration of all the original biodiversity associated with these seaweeds can be a difficult, complex, and long‐term process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号