首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The current study examined whether opening of the ATP-sensitive K(+) (K(ATP)) channel can induce hydroxyl free radical (OH) generation, as detected by increases in nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) levels in the rat myocardium. When KCl (4-140mM) was administered to rat myocardium through microdialysis probe, the level of 2,3-DHBA increased gradually in a potassium ion concentration ([K(+)](o))-dependent manner. The [K(+)](o) for half-maximal effect of the level of 2,3-DHBA production (ED(50)) was 67.9microM. The maximum attainable concentration of the level of 2,3-DHBA (E(max)) was 0.171microM. Induction of glibenclamide (10microM) decreased OH formation. The half-maximal inhibitory effect (IC(50)) for glibenclamide against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 9.2microM. 5-Hydroxydecanoate (5-HD, 100microM), another K(ATP) channel antagonist, also decreased [K(+)](o)-induced OH formation. The IC(50) for 5-HD against the [K(+)](o) (70mM)-evoked increase in 2,3-DHBA was 107.2microM. The heart was subjected to myocardial ischemia for 15min by occlusion of left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with glibenclamide (10microM) or 5-HD (100microM). These results suggest that opening of cardiac K(ATP) channels by depolarization evokes OH generation.  相似文献   

2.
We investigated the efficacy of histidine on iron (II)-induced hydroxyl radical (.OH) generation in extracellular fluid of the rat myocardium using a flexibly mounted microdialysis technique (O system). Rats were anesthetized and a microdialysis probe was implanted in the left ventricular, followed by infusion of sodium salicylate in Ringer's solution (0.5 nmol/microL/min) to detect the generation .OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA). Iron (II) clearly produced a concentration-dependent increase in .OH formation. A positive linear correlation between iron (II) and the formation of 2,3-DHBA (R2 = 0.987) was observed. However, histidine (25 mM) was infused through a microdialysis probe; iron (II) failed to increase the 2,3-DHBA formation obtained. To examine the effect of histidine on ischemia-reperfusion of the myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, a marked elevation of the levels of 2,3-DHBA was observed in the heart dialysate. When corresponding experiments were performed with histidine (25 mM)-pretreated animals, histidine prevented the ischemia-reperfusion induced .OH generation trapped as 2,3-DHBA. These results indicate that histidine protects the myocardium against ischemia-reperfusion damage by .OH generation.  相似文献   

3.
The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.  相似文献   

4.
Obata T  Yamanaka Y 《Life sciences》2000,68(6):689-697
The present study examined the antioxidant effect of histidine on extracellular potassium ion concentration, [K+]o-induced depolarization enhances 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical (*OH) generation in the rat striatum. Rats were anesthetized and sodium salicylate in Ringer's solution (0.5 nmol/M microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Induction of [K+]o (20, 70 and 140 mM) significantly increased the level of 2,3-DHBA by the action of MPP+ (5 mM) in a concentration-dependent manner. However, histidine (25 mM) reduced the [K+]o-induced *OH formation. Although the level of MPP+-induced dopamine (DA) and 2,3-DHBA formation after [K+]o (70 mM) treatment increased, [K+]o failed to increase either the level of MPP+-induced DA and 2,3-DHBA in the reserpinized group. When iron (II) was administered to [K+]o (70 mM)-pretreated rats, iron (II) clearly produced a dose-dependent increase in the level of 2,3-DHBA, as compared with MPP+-only treated rats. However, in the presence of histidine (25 mM), the effect of [K+]o was abolished. These results indicated that histidine may reduce the [K+]o-induced depolarization enhanced *OH formation by the action of MPP+ in the rat striatum.  相似文献   

5.
We examined the effect of imipramine (a tricyclic antidepressant drug) on hydroxyl radical (.OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in extracellular fluid of rat striatum, using a microdialysis technique. Imipramine enhanced the formation of.OH trapped as 2,3-dihydroxybenzoic acid (DHBA) induced by MPP(+) (5 mM). Introduction of imipramine (0.1, 0.5 and 1.0 mM) dose-dependently increased the level of dopamine (DA) release. Concomitantly, imipramine enhanced DA efflux and the level of DHBA induced by MPP(+), as compared with MPP(+)-treated control. When corresponding experiments were performed with reserpinized rats, there were small increases in the levels of DA and nonsignificant increase in the formation of DHBA. When iron (II) was administered to imipramine (1 mM)-treated animals, a marked elevation of DHBA was observed, compared with MPP(+)-only treated animals. A positive linear correlation was observed between iron (II) and DHBA (R(2)=0.985) in the dialysate. These results indicate that imipramine enhances generation of.OH induced by MPP(+) during enhanced DA overflow.  相似文献   

6.
We examined the effect of fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on the production of hydroxyl radical (*OH) generation via nitric oxide synthase (NOS) activation by an in vivo microdialysis technique. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and tissue was perfused with Ringer's solution through the microdialysis probe at a rate of 1 microl/min. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused directly through a microdialysis probe to detect the generation of *OH. Induction of [K(+)](o) (70 mM) or tyramine (1 mM), significantly increased the formation of *OH trapped as 2,3-dihydroxybenzoic acid (DHBA). The application of N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, significantly decreased the K(+) depolarization-induced *OH formation, but the effect of tyramine significantly increased the level of 2,3-DHBA. When fluvastatin (100 microM), an inhibitor of low-density lipoprotein (LDL) oxidation, was administered to L-NAME-pretreated animals, both KCl and tyramine failed to increase the level of 2,3-DHBA formation. The effect of fluvastatin may be unrelated to K(+) depolarization-induced *OH generation. To examine the effect of fluvastatin on ischemic/reperfused rat myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, a marked elevation of the level of 2,3-DHBA was observed. However, in the presence of fluvastatin (100 microM), the elevation of 2,3-DHBA was not observed in ischemia/reperfused rat heart. Fluvastatin, orally at a dose of 3 mg/kg/day for 4 weeks, significantly blunted the rise of serum creatine phosphokinase and improved the electrocardiogram 2 h after coronary occlusion. These results suggest that fluvastatin is associated with a cardioprotective effect due to the suppression of noradrenaline-induced *OH generation by inhibiting LDL oxidation in the heart.  相似文献   

7.
Ringer's solution containing salicylic acid (5 nmol/microliters/min) was infused directly through an intracranial microdialysis probe to detect the generation of hydroxyl radicals (.OH) reflected by the formation of dihydroxybenzoic acids (DHBA) in the caudate nucleus of anesthetized rats. Brain dialysate was assayed for dopamine, 2,3-, and 2,5-DHBA by a high-pressure liquid chromatography-electrochemical (HPLC-EC) procedure. 1-Methyl-4-phenylpyridinium ions (MPP+, 0 to 150 nmol) increased dose-dependently the release of dopamine and the formation of DHBA. A positive linear correlation between the release of dopamine and the formation of 2,3- or 2,5-DHBA was observed (R2 = .98). The present results demonstrate the validity of the use of not only 2,3-DHBA but also 2,5-DHBA as an in vivo index of oxidative damage generated by reactive .OH radicals. In conclusion, the present study demonstrates a novel use of intracranial microdialysis of salicylic acid to assess the oxidative damage elicited by .OH in living brain.  相似文献   

8.
We examined the effect of non-SH-containing angiotensin converting enzyme (ACE) inhibitor imidaprilat on hydroxyl radical (•OH) generation using microdialysis. Salicylic acid in Ringer's solution containing sodium salicylate (0.5 n mol μL−1 min−1) was infused directly through a microdialysis probe to detect the generation of •OH as reflected by the formation of 2,3-dihydroxybenzoic acid (DHBA) in the myocardium of anesthetized rats. We compared the ability of two non-SH-containing ACE inhibitors (imidaprilat and enalaprilat) with an -SH-containing ACE inhibitor (captopril) to scavenge the •OH. When iron (II) was administered to animals pretreated with these three ACE inhibitors, a decrease in 2,3-DHBA of all three compounds was observed, as compared with the iron (II) only-treated group. All three ACE inhibitors were able to scavenge •OH generated by the action of iron (II). However, imidaprilat is a free radical scavenger more potent than enalaprilat. These results suggested that ACE inhibitors are probably not only related to the presence of the SH radical.  相似文献   

9.
This study used a weight drop impact injury model to explore the role of iron and the reality of iron-catalyzed hydroxyl radical ((*)OH) formation in secondary spinal cord injury (SCI). The time course of total extracellular iron was measured following SCI by microcannula sampling and atomic absorption spectrophotometry analysis. Immediately following SCI, the total iron concentration increased from an undetectable level to an average of 1.32 microM. The time course of SCI-induced (*)OH-generating catalytic activity in the cord was obtained by determining the ability of tissue homogenate to convert hydrogen peroxide to (*)OH and then measuring 2,3-dihydroxybenzoic acid, a hydroxylation product of salicylate. The concentration of 2,3-DHBA quickly and significantly increased (p <.001) and returned to sham level (p = 1) by 30 min post-SCI. Desferrioxamine (80 and 800 mg/kg body weight) significantly (p <.001) reduced the catalytic activity, suggesting that iron is the major contributor of the activity. Administering FeCl(3) (100 microM)/EDTA (0.5 mM) in ACSF into the cord through a dialysis fiber significantly increased SCI-induced (*)OH production in the extracellular space, demonstrating that Fe(3+) can catalyze (*)OH production in vivo. Our results support that iron-catalyzed (*)OH formation plays a role in the early stage of secondary SCI.  相似文献   

10.
We used a flexibly mounted microdialysis technique to the hearts of rats and examined the protective effect of imidaprilat, an angiotensin-converting enzyme (ACE) inhibitor, on the production of hydroxyl free radical (*OH) generation. A microdialysis probe was implanted into the left ventricular myocardium, and dialysate norepinephrine (NE) concentrations were measured as an index of myocardial interstitial NE levels. Sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was directly infused through a microdialysis probe to detect the generation of *OH reflected by the formation of dihydroxybenzoic acid (DHBA) in rat myocardium. When tyramine (1 mM) was directly infused through the microdialysis probe, the level of NE significantly increased in the dialysate and the level of NE increased by 128 +/- 43%. Imidaprilat (5, 25 and 50 microM) decreased the level of tyramine (1 mM)-induced NE in a concentration-dependent manner. Tyramine clearly produced an increase in *OH formation. In the presence of imidaprilat (50 microM), tyramine failed to increase both 2,3- and 2,5-dihydroxylation. Therefore, the effects of imidaprilat on the *OH generation in the sympathetic nerve blockaded hearts by reserpine treatment were not observed. Moreover, to examine the effect of imidaprilat on *OH formation by ischemia/reperfusion of the myocardium, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery. When the heart was reperfused, elevation of NE and 2,3- and 2,5-DHBA in imidaprilat (50 microM)-pretreated animals was not observed in the heart dialysate. Imidaprilat 2.5 mg/kg i.p. pretreatment at 5 h before coronary occlusion significantly blunted the rise of serum creatine phosphokinase and improved the electrocardiogram 2 h after coronary occlusion. These results suggest that imidaprilat, an ACE inhibitor, is associated with cardioprotective effect due to the suppression of NE-induced *OH generation.  相似文献   

11.
Ultraviolet radiation (UV) induces cell damages leading to skin photoaging and skin cancer. ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to exert significant myocardial preservation and neuroprotection in vitro and in vivo, and yet the potential role of those KCOs in protection against UV-induced skin cell damage is unknown. We investigated the effects of pinacidil and diazoxide, two classical KCOs, on UV-induced cell death using cultured human keratinocytes (HaCat cells). Here, we demonstrated for the first time that Kir 6.1, Kir 6.2 and SUR2 subunits of K(ATP) channels are functionally expressed in HaCaT cells and both non-selective K(ATP) channel opener pinacidil and mitoK(ATP) (mitochondrial K(ATP)) channel opener diazoxide attenuated UV-induced keratinocytes cell death. The protective effects were abolished by both non-selective K(ATP) channel blocker glibenclamide and selective mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). Also, activation of K(ATP) channel with pinacidil or diazoxide resulted in suppressive effects on UV-induced MAPK activation and reactive oxygen species (ROS) production. Unexpectedly, we found that the level of intracellular ROS was slightly elevated in HaCaT cells when treated with pinacidil or diazoxide alone. Furthermore, UV-induced mitochondrial membrane potential loss, cytochrome c release and ultimately apoptotic cell death were also inhibited by preconditioning with pinacidil and diazoxide, and their effects were reversed by glibenclamide and 5-HD. Taken together, we contend that mitoK(ATP) is likely to contribute the protection against UV-induced keratinocytes cell damage. Our findings suggest that K(ATP) openers such as pinacidil and diazoxide may be utilized to prevent from UV-induced skin aging.  相似文献   

12.
1. We examined in vivo monitoring of norepinephrine and hydroxyl radical generation in rat myocardium with a microdialysis technique. For this purpose, we designed the microdialysis probe holding system which includes loose fixation of the tube and synchronization of the movement of the heart and the probe.2. The hydroxyl free radical (OH) reacts with salicylate and generates 2,3- and 2,5-dihydroxybenzoic acid (DHBA) which can be measured electrochemically in picomole quantity by high performance liquid chromatography (HPLC).3. After probe implantation, norepinephrine concentration of dialysate decreased over the first 150 min and then reached an almost steady level. A positive linear correlation between the ferrous iron and OH formation trapped as 2,3-DHBA (R2 = 0.960) and 2,5-DHBA (R2 = 0.982) was observed using the microdialysis technique.4. The present results indicate that non-enzymatic oxidation in the extracellular fluid may play a key role in hydroxyl radical generation by ferrous iron.  相似文献   

13.
Han J  Kim N  Park J  Seog DH  Joo H  Kim E 《Journal of biochemistry》2002,131(5):721-727
The purpose of this study was to determine whether ATP-sensitive potassium channel (K(ATP) channel) activation generates oxygen free radicals in the rabbit heart. We assayed malondialdehyde (MDA) in rabbit heart slices in vitro as an indicator of oxygen free radical generation. The K(ATP) channel openers, pinacidil and cromakalim, significantly increased MDA production in a concentration-dependent manner. MDA formation also increased linearly with incubation time in the presence of K(ATP) channel openers. The K(ATP) channel blockers, glibenclamide and 5-hydroxydecanoate (5-HD), decreased K(ATP) channel opener-induced MDA formation in a concentration-dependent manner. When Fe(2+) was administered to heart slices that had been pretreated with K(ATP) channel openers, a marked elevation in MDA was observed, compared to heart slices that were treated with Fe(2+) alone. A positive linear correlation between Fe(2+) and MDA level was observed. The MDA levels of heart slices subjected to anoxia for 15 min remained unchanged until reperfusion. When the heart slices were reoxygenated for 30 min, a marked increase in MDA formation was observed. However, in the presence of glibenclamide and 5-HD, reperfusion following anoxia did not result in increased MDA. These results suggest that the opening of mitochondrial K(ATP) channels in rabbit heart slices evokes oxygen free radical generation via a Fenton-type reaction.  相似文献   

14.
The role of ATP-sensitive potassium (K(ATP)) channels in the late phase of ischemic preconditioning (PC) remains unclear. Furthermore, it is unknown whether K(ATP) channels serve as end effectors both for late PC against infarction and against stunning. Thus, in phase I of this study, conscious rabbits underwent a 30-min coronary occlusion (O) followed by 72 h of reperfusion (R) with or without ischemic PC (6 4-min O/4-min R cycles) 24 h earlier. Late PC reduced infarct size approximately 46% versus controls. The K(ATP) channel blocker 5-hydroxydecanoic acid (5-HD), given 5 min before the 30-min O, abrogated the infarct-sparing effect of late PC but did not alter infarct size in non-PC rabbits. In phase II, rabbits underwent six 4-min O/4-min R cycles for 3 consecutive days (days 1, 2, and 3). In controls, the total deficit of systolic wall thickening (WTh) after the sixth reperfusion was reduced by 46% on day 2 and 54% on day 3 compared with day 1, indicating a late PC effect against myocardial stunning. Neither 5-HD nor glibenclamide, given on day 2, abrogated late PC. The K(ATP) channel opener diazoxide, given on day 1, attenuated stunning, and this effect was completely blocked by 5-HD. Thus the same dose of 5-HD that blocked the antistunning effect of diazoxide failed to block the antistunning effects of late PC. Furthermore, when diazoxide was administered in PC rabbits on day 2, myocardial stunning was further attenuated, indicating that diazoxide and late PC have additive anti-stunning effects. We conclude that K(ATP) channels play an essential role in late PC against infarction but not in late PC against stunning, revealing an important pathogenetic difference between these two forms of cardioprotection.  相似文献   

15.
Iron acquired by cells is delivered to mitochondria for metabolic processing via pathways comprising undefined chemical forms. In order to assess cytosolic factors that affect those iron delivery pathways, we relied on microscopy and flow-cytometry for monitoring iron traffic in: (a) K562 erythroleukemia cells labeled with fluorescent metal-sensors targeted to either cytosol or mitochondria and responsive to changes in labile iron and (b) permeabilized cells that retained metabolically active mitochondria accessible to test substrates. Iron supplied to intact cells as transferrin-Fe(III) or Fe(II)-salts evoked concurrent metal ingress to cytosol and mitochondria. With either supplementation modality, iron ingress into cytosol was mostly absorbed by preloaded chelators, but ingress into mitochondria was fully inhibited only by some chelators, indicating different cytosol-to-mitochondria delivery mechanisms. Iron ingress into cytosol or mitochondria were essentially unaffected by depletion of cytosolic iron ligands like glutathione or the hypothesized 2,5 dihydroxybenzoate (2,5-DHBA) siderophore/chaperone. These ligands also failed to affect mitochondrial iron ingress in permeabilized K562 cells suspended in cytosol-simulating medium. In such medium, mitochondrial iron uptake was >6-eightfold higher for Fe(II) versus Fe(III), showed saturable properties and submicromolar K(1/2) corresponding to cytosolic labile iron levels. When measured in iron(II)-containing media, ligands like AMP, ADP or ATP, did not affect mitochondrial iron uptake whereas in iron(III)-containing media ADP and ATP reduced it and AMP stimulated it. Thus, cytosolic iron forms demonstrably contribute to mitochondrial iron delivery, are apparently not associated with DHBA analogs or glutathione but rather with resident components of the cytosolic labile iron pool.  相似文献   

16.
Whether the mitochondrial ATP-dependent potassium (mK(ATP)) channel is the trigger or the mediator of cardioprotection is controversial. We investigated the critical time sequences of mK(ATP) channel opening for cardioprotection in isolated rabbit hearts. Pretreatment with diazoxide (100 microM), a selective mK(ATP) channel opener, for 5 min followed by 10 min washout before the 30-min ischemia and 2-h reperfusion significantly reduced infarct size (9 +/- 3 vs. 35 +/- 3% in control), indicating a role of mK(ATP) channels as a trigger of protection. The protection was blocked by coadministration of the L-type Ca(2+) channel blockers nifedipine (100 nM) or 5-hydroxydecanoic acid (5-HD; 50 microM) or by the protein kinase C (PKC) inhibitor chelerythrine (5 microM). The protection of diazoxide was not blocked by 50 microM 5-HD but was blocked by 200 microM 5-HD or 10 microM glybenclamide administrated 5 min before and throughout the 30 min of ischemia, indicating a role of mK(ATP) opening as a mediator of protection. Giving diazoxide throughout the 30 min of ischemia also protected the heart, and the protection was not blocked by chelerythrine. Nifedipine did not affect the ability of diazoxide to open mK(ATP) channels assessed by mitochondrial redox state. In electrically stimulated rabbit ventricular myocytes, diazoxide significantly increased Ca(2+) transient but had no effect on L-type Ca(2+) currents. Our results suggest that opening of mK(ATP) channels can trigger cardioprotection. The trigger phase may be induced by elevation of intracellular Ca(2+) and activation of PKC. During the lethal ischemia, mK(ATP) channel opening mediates the protection, independent of PKC, by yet unknown mechanisms.  相似文献   

17.
During postischemic reperfusion, free radicals are produced and have deleterious effects in isolated rat hearts. We investigated whether melatonin (MEL) reduces the production of hydroxyl radical (*OH) in the effluent and aids in recovery of left ventricular (LV) function. Hearts were subjected to 30 min of ischemia followed by 30 min of reperfusion. Salicylic acid (SAL) was used as the probe for *OH, and its derivatives 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were quantified using HPLC. In addition, thiobarbituric acid reactive substances (TBARS) in the myocardium was measured. Plateaus in the measurement of 2,5- and 2,3-DHBA were seen from 3 to 8 min after reperfusion in each group. The group that received 100 microM MEL+ SAL had significantly reduced amounts of 2,5- and 2,3-DHBA by multiple folds, compared to the SAL group. TBARS was significantly decreased in the 100 microM MEL group (1.20+/-0.36 vs 1.85+/-0.10 micromol/g of drug-free group, p<0.001). More importantly, the 100 microM MEL group significantly recovered in LV function (LV developed pressure, +dp/dt, and -dp/dt; 63.0%, 60.3%, and 59.4% in the 100 microM MEL group; 30.2%, 29.7%, and 31.5% in the drug-free group, respectively; p<0.05). Duration of ventricular tachycardia or ventricular fibrillation significantly decreased in the 100 microM MEL group (100 microM MEL, 159+/-67 sec; drug-free, 1244+/-233 sec; p<0.05). As a result of scavenging *OH and reducing the extent of lipid peroxidation, MEL is an effective agent for protection against postischemic reperfusion injury.  相似文献   

18.
A large number of studies have reported the action of K(ATP) channel openers in accelerating the proliferation of hepatocytes and many other cell types in vitro. Few studies, however, have examined the proliferative effect of K(ATP) channel openers in vivo. The aim of this study was to determine whether the K(ATP) channel opener minoxidil accelerates liver regeneration after partial hepatectomy (PH) in vivo. Male Wistar rats underwent a 70% partial hepatectomy (PH) after receiving a subcutaneous injection of minoxidil (0.01 mg/kg or 0.03 mg/kg). Some of the rats were intravenously treated with 5-hydroxydecanoic acid (5-HD, 10 mg/kg) just before the minoxidil injection. Seventy-two hours after PH, DNA synthesis was immunohistochemically assessed by bromodeoxyuridine (BrdU) incorporation into the nuclei. Minoxidil induced significant and dose-dependent increase in the BrdU labeling index after PH, and 5-HD reversed this minoxidil-induced change. Minoxidil did not significantly affect the changes in liver weight and liver function after PH. The hepatic levels of prealbumin decreased by about 60% after PH and minoxidil inhibited the decrease. In conclusion, the K(ATP) channel opener minoxidil enhanced DNA synthesis after PH without affecting the liver function.  相似文献   

19.
The objective was to determine whether denervation reduces or enhances the physiological effects of the K(ATP) channel during fatigue in mouse extensor digitorum longus (EDL) and soleus muscle. For this, we measured the effects of 100 microM of pinacidil, a channel opener, and of 10 microM of glibenclamide, a channel blocker, in denervated muscles and compared the data to those observed in innervated muscles from the study of Matar et al. (Matar W, Nosek TM, Wong D, and Renaud JM. Pinacidil suppresses contractility and preserves energy but glibenclamide has no effect during fatigue in skeletal muscle. Am J Physiol Cell Physiol 278: C404-C416, 2000). Pinacidil increased the (86)Rb(+) fractional loss during fatigue, and this effect was 2.6- to 3.4-fold greater in denervated than innervated muscle. Pinacidil also increased the rate of fatigue; for EDL the effect was 2.5-fold greater in denervated than innervated muscle, whereas for soleus the difference was 8.6-fold. A major effect of glibenclamide was an increase in resting tension during fatigue, which was for the EDL and soleus muscle 2.7- and 1.9-fold greater, respectively, in denervated than innervated muscle. A second major effect of glibenclamide was a reduced capacity to recover force after fatigue, an effect observed only in denervated muscle. We therefore suggest that the physiological effects of the K(ATP) channel are enhanced after denervation.  相似文献   

20.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号