首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first medicine manufactured by three-dimensional (3D) printing was recently approved by the Food and Drug Administration (FDA). The advantages of printing as a manufacturing route enabling more flexibility regarding the dose, and enlarging individual treatment options, have been demonstrated. There is a particular need for flexible drug delivery solutions when it comes to children. Printing as a new pharmaceutical manufacturing technology brings manufacturing closer to the patient and can easily be adjusted to the required dosing scheme, offering more flexibility for treatments. Printing of medicine may therefore become the manufacturing route of choice to provide tailored and potentially on-demand treatments for patients with individual needs. This paper intends to summarize and discuss the state of the art, the crucial aspects which should be taken into account, and the still-open questions, in order to make 3D printing a suitable manufacturing route for pediatric drugs.  相似文献   

2.
In 2012, the Quality-by-Design and Product Performance Focus Group of AAPS conducted a survey to assess the state of adoption and perception of Quality-by-Design (QbD). Responses from 149 anonymous individuals from industry—including consultants—(88%), academia (7%), and regulatory body (4%), were collected. A majority of respondents (54% to 76%) reported high frequency of utilization of several tools and most QbD elements outlined by International Conference on Harmonization Q8, with design of experiments, risk assessment, and the quality target product profile ranked as the top three. Over two thirds of respondents agreed that the benefits of QbD included both the positive impact it can have on the patient (78%), as well as on internal processes such as knowledge management (85%), decision making (79%), and lean manufacture (71%). However, more than 50% from industry were neutral about or disagreed with QbD leading to a better return on investment. This suggests that, despite the recognized scientific, manufacture, and patient-related benefits, there is not yet a clearly articulated business case for QbD available. There was a difference of opinion between industry and regulatory agency respondents as to whether a QbD-based submission resulted in increased efficiency of review. These contrasting views reinforce the idea that QbD implementation can benefit from further dialog between industry and regulatory authorities. A majority of respondents from academia indicated that QbD has influenced their research. In total, the results indicate the broad adoption of QbD but also suggest we are yet in a journey and that the process of gathering all experience and metrics required for connecting and demonstrating QbD benefits to all stakeholders is still in progress.  相似文献   

3.
Assessment of albumin and/or protein excretion in the urine is a key step in the early detection and appropriate management of chronic kidney disease. The approach to testing for albuminuria/proteinuria in the community is variable and often suboptimal. It is hampered by: variation in laboratory measurement; lack of standard reference materials and testing procedures; variable definitions and units of reporting; conflicting recommendations and practices regarding who to test; and uncertainty over when and how testing is most appropriately done. This review discusses the current status of proteinuria guidelines around the world and the key clinical issues that need to be addressed before a unifying global guideline can be developed.  相似文献   

4.
5.
6.
This review summarizes recent literature for applying pharmacogenomics to antifungal selection and dosing, providing an approach to implementing antifungal pharmacogenomics in clinical practice. The Clinical Pharmacogenetics Implementation Consortium published guidelines on CYP2C19 and voriconazole, with recommendations to use alternative antifungals or adjust voriconazole dose with close therapeutic drug monitoring (TDM). Recent studies demonstrate an association between CYP2C19 phenotype and voriconazole levels, clinical outcomes, and adverse events. Additionally, CYP2C19-guided preemptive dose adjustment demonstrated benefit in two prospective studies for prophylaxis. Pharmacokinetic–pharmacodynamic modeling studies have generated proposed voriconazole treatment doses based on CYP2C19 phenotypes, with further validation studies needed. Sufficient evidence is available for implementing CYP2C19-guided voriconazole selection and dosing among select patients at risk for invasive fungal infections. The institution needs appropriate infrastructure for pharmacogenomic testing, integration of results in the clinical decision process, with TDM confirmation of goal trough achievement, to integrate antifungal pharmacogenomics into routine clinical care.  相似文献   

7.
8.
Harnessing endogenous repair mechanisms to promote tissue regeneration in situations in which it does not normally occur has long been a goal in biomedical science. Recent advances in tissue stem cells indicate that this goal may now be achievable. Here we consider both the promise and the hurdles we still have to overcome.  相似文献   

9.
10.
Diagnostic tools for invasive fungal infections have continuously improved within the last decades. Nowadays, cultural methods, antigen testing, and molecular tests, such as polymerase chain reaction, are widely used. These methods, however, are accompanied with different limitations as various availability, various turnaround time or high costs. A new generation of point-of-care test has shown promising results in various studies and may overcome some of these limitations. We therefore reviewed the literature for the most promising new point-of-care tests for invasive aspergillosis (Aspergillus-specific lateral-flow device test, Aspergillus proximity ligation antigen assay), cryptococcosis (cryptococcal lateral-flow assay), and for histoplasmosis (loop-mediated isothermal amplification assay).  相似文献   

11.
Genome sequencing is becoming cheaper and faster thanks to the introduction of next-generation sequencing techniques. Dozens of new plant genome sequences have been released in recent years, ranging from small to gigantic repeat-rich or polyploid genomes. Most genome projects have a dual purpose: delivering a contiguous, complete genome assembly and creating a full catalog of correctly predicted genes. Frequently, the completeness of a species’ gene catalog is measured using a set of marker genes that are expected to be present. This expectation can be defined along an evolutionary gradient, ranging from highly conserved genes to species-specific genes. Large-scale population resequencing studies have revealed that gene space is fairly variable even between closely related individuals, which limits the definition of the expected gene space, and, consequently, the accuracy of estimates used to assess genome and gene space completeness. We argue that, based on the desired applications of a genome sequencing project, different completeness scores for the genome assembly and/or gene space should be determined. Using examples from several dicot and monocot genomes, we outline some pitfalls and recommendations regarding methods to estimate completeness during different steps of genome assembly and annotation.  相似文献   

12.
13.
14.
15.
16.
Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity.  相似文献   

17.
正Following the publication of the US National Research Council(NRC)report‘‘Toward Precision Medicine:Building a Knowledge Network for Biomedical Research and a New Taxonomy of Diseasesin 2011[1],several nations have announced that their national research programs would definitely head toward this direction.Now,precision medicine(PM)became a banner for many large-scale biomedica  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号