首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of NFκB activity is central to many processes during development and disease. Activation of NFκB family members depends on degradation of inhibitory IκB proteins. In Drosophila, a nuclear gradient of the NFκB/c-rel protein Dorsal subdivides the embryonic dorsal–ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the IκB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. CalpainA knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal–ventral patterning. As shown for mammalian IκB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of CalpainA or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms CalpainA activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca2+ signals, conferring precision to Dorsal-target expression domains.  相似文献   

2.
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.  相似文献   

3.
Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.  相似文献   

4.
5.
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro‐inflammatory form of cell death. Whether TNF‐induced NFκB affects the fate decision to undergo TNF‐induced necroptosis is unclear. Live‐cell microscopy and model‐aided analysis of death kinetics identified a molecular circuit that interprets TNF‐induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3‐containing necrosome complex and protect a fraction of cells from transient, but not long‐term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF‐induced necroptosis. Our results suggest that TNF''s dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB‐A20‐RIPK3 circuit, that could be targeted to treat inflammation and cancer.  相似文献   

6.
7.
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.  相似文献   

8.
Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence‐associated beta‐galactosidase (SA‐β‐gal) activity in oxidative stress‐induced senescent mouse embryonic fibroblasts as well as in etoposide‐induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1 −/ and Zmpste24 −/− mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2‐year‐old WT mice. Taken together, these results demonstrate that IKK/NF‐κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age‐related diseases.  相似文献   

9.
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF‐κB signalling and reduced the production of pro‐inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF‐κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti‐inflammatory effect of PAB and rescue the activation of NF‐κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF‐κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA.  相似文献   

10.
Gene variants associated with longevity are also associated with protection against cognitive decline, dementia and Alzheimer''s disease, suggesting that common physiologic pathways act at the interface of longevity and cognitive function. To test the hypothesis that variants in genes implicated in cognitive function may promote exceptional longevity, we performed a comprehensive 3‐stage study to identify functional longevity‐associated variants in ~700 candidate genes in up to 450 centenarians and 500 controls by target capture sequencing analysis. We found an enrichment of longevity‐associated genes in the nPKC and NF‐κB signaling pathways by gene‐based association analyses. Functional analysis of the top three gene variants (NFKBIA, CLU, PRKCH) suggests that non‐coding variants modulate the expression of cognate genes, thereby reducing signaling through the nPKC and NF‐κB. This matches genetic studies in multiple model organisms, suggesting that the evolutionary conservation of reduced PKC and NF‐κB signaling pathways in exceptional longevity may include humans.  相似文献   

11.
12.
13.
NF-κB signaling plays a critical role in tumor growth and treatment resistance in GBM as in many other cancers. However, the molecular mechanisms underlying high, constitutive NF-κB activity in GBM remains to be elucidated. Here, we screened a panel of tripartite motif (TRIM) family proteins and identified TRIM22 as a potential activator of NF-κB using an NF-κB driven luciferase reporter construct in GBM cell lines. Knockout of TRIM22 using Cas9-sgRNAs led to reduced GBM cell proliferation, while TRIM22 overexpression enhanced proliferation of cell populations, in vitro and in an orthotopic xenograft model. However, two TRIM22 mutants, one with a critical RING-finger domain deletion and the other with amino acid changes at two active sites of RING E3 ligase (C15/18A), were both unable to promote GBM cell proliferation over controls, thus implicating E3 ligase activity in the growth-promoting properties of TRIM22. Co-immunoprecipitations demonstrated that TRIM22 bound a negative regulator of NF-κB, NF-κB inhibitor alpha (IκBα), and accelerated its degradation by inducing K48-linked ubiquitination. TRIM22 also formed a complex with the NF-κB upstream regulator IKKγ and promoted K63-linked ubiquitination, which led to the phosphorylation of both IKKα/β and IκBα. Expression of a non-phosphorylation mutant, srIκBα, inhibited the growth-promoting properties of TRIM22 in GBM cell lines. Finally, TRIM22 was increased in a cohort of primary GBM samples on a tissue microarray, and high expression of TRIM22 correlated with other clinical parameters associated with progressive gliomas, such as wild-type IDH1 status. In summary, our study revealed that TRIM22 activated NF-κB signaling through posttranslational modification of two critical regulators of NF-κB signaling in GBM cells.Subject terms: CNS cancer, Oncogenes, Ubiquitin ligases  相似文献   

14.
The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non‐cell‐autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF‐κB signaling upregulation is central to elicit this immune response. Inactivating NF‐κB abolishes NK cell‐mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF‐κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell‐mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF‐κB‐mediated immunogenicity.  相似文献   

15.
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.  相似文献   

16.
17.
To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high‐mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll‐like receptor 4 (TLR4)‐nuclear factor kappa B (NF‐κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra‐articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro‐computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1‐RAGE/TLR4‐NF‐κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF‐κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease‐3 and interleukin‐6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1‐RAGE/TLR4‐NF‐kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.  相似文献   

18.
In lysosomes isolated from rat liver and spleen, a percentage of the intracellular inhibitor of the nuclear factor κ B (IκB) can be detected in the lysosomal matrix where it is rapidly degraded. Levels of IκB are significantly higher in a lysosomal subpopulation that is active in the direct uptake of specific cytosolic proteins. IκB is directly transported into isolated lysosomes in a process that requires binding of IκB to the heat shock protein of 73 kDa (hsc73), the cytosolic molecular chaperone involved in this pathway, and to the lysosomal glycoprotein of 96 kDa (lgp96), the receptor protein in the lysosomal membrane. Other substrates for this degradation pathway competitively inhibit IκB uptake by lysosomes. Ubiquitination and phosphorylation of IκB are not required for its targeting to lysosomes. The lysosomal degradation of IκB is activated under conditions of nutrient deprivation. Thus, the half-life of a long-lived pool of IκB is 4.4 d in serum-supplemented Chinese hamster ovary cells but only 0.9 d in serum-deprived Chinese hamster ovary cells. This increase in IκB degradation can be completely blocked by lysosomal inhibitors. In Chinese hamster ovary cells exhibiting an increased activity of the hsc73-mediated lysosomal degradation pathway due to overexpression of lamp2, the human form of lgp96, the degradation of IκB is increased. There are both short- and long-lived pools of IκB, and it is the long-lived pool that is subjected to the selective lysosomal degradation pathway. In the presence of antioxidants, the half-life of the long-lived pool of IκB is significantly increased. Thus, the production of intracellular reactive oxygen species during serum starvation may be one of the mechanisms mediating IκB degradation in lysosomes. This selective pathway of lysosomal degradation of IκB is physiologically important since prolonged serum deprivation results in an increase in the nuclear activity of nuclear factor κ B. In addition, the response of nuclear factor κ B to several stimuli increases when this lysosomal pathway of proteolysis is activated.  相似文献   

19.
The αvβ3 integrin plays a fundamental role during the angiogenesis process by inhibiting endothelial cell apoptosis. However, the mechanism of inhibition is unknown. In this report, we show that integrin-mediated cell survival involves regulation of nuclear factor-kappa B (NF-κB) activity. Different extracellular matrix molecules were able to protect rat aorta- derived endothelial cells from apoptosis induced by serum withdrawal. Osteopontin and β3 integrin ligation rapidly increased NF-κB activity as measured by gel shift and reporter activity. The p65 and p50 subunits were present in the shifted complex. In contrast, collagen type I (a β1-integrin ligand) did not induce NF-κB activity. The αvβ3 integrin was most important for osteopontin-mediated NF-κB induction and survival, since adding a neutralizing anti-β3 integrin antibody blocked NF-κB activity and induced endothelial cell death when cells were plated on osteopontin. NF-κB was required for osteopontin- and vitronectin-induced survival since inhibition of NF-κB activity with nonphosphorylatable IκB completely blocked the protective effect of osteopontin and vitronectin. In contrast, NF-κB was not required for fibronectin, laminin, and collagen type I–induced survival. Activation of NF-κB by osteopontin depended on the small GTP-binding protein Ras and the tyrosine kinase Src, since NF-κB reporter activity was inhibited by Ras and Src dominant-negative mutants. In contrast, inhibition of MEK and PI3-kinase did not affect osteopontin-induced NF-κB activation. These studies identify NF-κB as an important signaling molecule in αvβ3 integrin-mediated endothelial cell survival.  相似文献   

20.
The IκBα protein is able both to inhibit nuclear import of Rel/NF-κB proteins and to mediate the export of Rel/NF-κB proteins from the nucleus. We now demonstrate that the c-Rel–IκBα complex is stably retained in the cytoplasm in the presence of leptomycin B, a specific inhibitor of Crm1-mediated nuclear export. In contrast, leptomycin B treatment results in the rapid and complete relocalization of the v-Rel–IκBα complex from the cytoplasm to the nucleus. IκBα also mediates the rapid nuclear shuttling of v-Rel in an interspecies heterokaryon assay. Thus, continuous nuclear export is required for cytoplasmic retention of the v-Rel–IκBα complex. Furthermore, although IκBα is able to mask the c-Rel-derived nuclear localization sequence (NLS), IκBα is unable to mask the v-Rel-derived NLS in the context of the v-Rel–IκBα complex. Taken together, our results demonstrate that IκBα is unable to inhibit nuclear import of v-Rel. We have identified two amino acid differences between c-Rel and v-Rel (Y286S and L302P) which link the failure of IκBα to inhibit nuclear import and DNA binding of a mutant c-Rel protein to oncogenesis. Our results support a model in which loss of IκBα-mediated control over c-Rel leads to oncogenic activation of c-Rel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号