首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an ecosystem responds to external environmental changes slowly due to its reorganization compared with the water quality and it has great influence on lake ecosystems, it is indispensable to evaluate ecological impacts from water transfers for the security of the water source in Lake Taihu. Evaluations were conducted by comparing the indicators exergy (Ex), structural exergy (Exst) and phytoplankton buffer capacity (β((TP)/(Phy))) changes after water transfers from 2002 to 2007 with those reference statuses where the water transfers were not implemented from 1998 to 2001. Besides those three ecological indicators, affiliated indicators such as ratio of zooplankton biomass to phytoplankton biomass, diversity index and trophic state index were also involved in the evaluation. The results showed the water transfers altered the ecosystem status and had positive effects on Lake Taihu and most of its sub-zones, such as Gonghu Bay, Northwest Zone, Southwest Zone and Centre Zone in the post-transfer period. The seasonable trends indicated that the ecosystem health with environmental influences excluded in November and February was better than that in May and August during the water transfers from 2002 to 2007 and there were significant differences in the ecosystem health of the first and second stages during water transfers. The ecosystem health in May and August was better than in November and February during the first stage of the water transfers (from 2002 to 2004), while the opposite obtained during the second stage from 2005 to 2007 in Dongtaihu Bay and East Epigeal Zone. On the whole, water transfers serve to deter algal congregation in Lake Taihu.  相似文献   

2.
Mandal S  Ray S  Roy SK 《Bio Systems》2009,95(1):30-34
The ascendancy concept aims at quantitatively describing the growth and development of an ecosystem as whole. Growth is an increase in the total system throughflow, while development is taken to be a rise in the average mutual information inherent in the network flow structure. As an ecosystem matures and goes through a series of successional stages, its ascendancy exhibits a propensity to increase. In any ecosystem the equilibrium condition may gradually turn into a chaotic situation for different reasons. In this paper a model is proposed of an aquatic ecosystem comprising of three groups, viz., phytoplankton, zooplankton and fish. Rate parameters are changed according to the change of the size of the organisms. The model is run in different conditions with gradual decrement of the body sizes of zooplankton. Allometric principle of the relationship of body size of zooplankton and two rate parameters (growth rate and half saturation constant) are incorporated in this model. According to allometric principle gradual decrement of body sizes of zooplankton consequently increases the grazing rate and decreases the half-saturation constant of this organisms. The system exhibits different states (equilibrium point--stable limit cycle--doubling and ultimately chaos) by gradual increase of zooplankton grazing rate and decrease of half-saturation constant. This paper tests the high level of ascendancy of the systems at the edge of oscillation before starting of the chaos. This high level of throughflow and mutual information, i.e. Ascendency supports the hypothesis that the system can coordinate the most complex behavior and shows maximum biocomplexity in this situation.  相似文献   

3.
In this paper, a mathematical model for the interacting dynamics of phytoplankton-zooplankton is proposed. The phytoplankton have the ability to take refuge and release toxins to avoid over predation by zooplankton. The zooplankton are provided some additional food to persist in the system. The phytoplankton are assumed to be affected directly by external toxic substances whereas zooplankton are affected indirectly by feeding on the affected phytoplankton. We incorporate seasonal variations in the model, assuming the level of nutrients, refuge and the rate of toxins released by phytoplankton as functions of time. Our results show that when high toxicity and refuge cause extinction of zooplankton, providing additional food supports the survival of zooplankton population and controls the phytoplankton population. Prey refuge and additional food have stabilizing effects on the system; higher values of the former results in extinction of zooplankton whereas phytoplankton disappear for larger values of the latter. Seasonality in nutrients level and toxins released by phytoplankton generate higher periodic solutions while time-dependent refuge of phytoplankton causes the occurrence of a period-three solution. The possibility of finding additional food for zooplankton may push back the ecosystem to a simple stable state from a complex dynamics.  相似文献   

4.
The termination of harmful algal blooms (HABs) and coexistence of phytoplankton-zooplankton populations are of great importance to human health, ecosystem, environment, tourism and fisheries. In this paper we propose a three-component model consisting of dissolved limiting nutrients (N) supplied at constant rate and partially recycled after the death of plankton by bacterial decomposition, phytoplankton (P) and zooplankton (Z), where the growth of zooplankton species reduce due to toxic chemicals released by phytoplankton species. Our analysis leads to different thresholds which are expressible in terms of model parameters and determine the existence and stability of various states of the system. We observe that phytoplankton-zooplankton persist if the maximal zooplankton ingestion rate exceeds a lower threshold value. It is shown that the coexistence equilibrium loses its stability when the dilution rate of the nutrient concentration passes through a critical value and Hopf bifurcation occurs that induces oscillations of the population. Our results indicate that the occurrence of bloom increases when the nutrient concentration is very high, and in that case toxin produced by the phytoplankton plays a very crucial role towards the termination of the planktonic bloom.  相似文献   

5.
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.  相似文献   

6.
In this paper, we derive and analyze a mathematical model for the interactions between phytoplankton and zooplankton in a periodic environment, in which the growth rate and the intrinsic carrying-capacity of phytoplankton are changing with respect to time and nutrient concentration. A threshold value: “Predator’s average growth rate” is introduced and it is proved that the phytoplankton–zooplankton ecosystem is permanent (both populations survive cronically) and possesses a periodic solution if and only if the value is positive. We use TP (Total Phosphorus) concentration to mark the degree of eutrophication. Based on experimental data, we fit the growth rate function and the environmental carrying capacity function with temperature and nutrient concentration as independent variables. Using measured data of temperature on water bodies we fit a periodic temperature function of time, and this leads the growth rate and intrinsic carrying-capacity of phytoplankton to be periodic functions of time. Thus we establish a periodic system with TP concentration as parameter. The simulation results reveal a high diversity of population levels of the ecosystem that are mainly sensitive to TP concentration and the death-rate of zooplankton. It illustrates that the eruption of algal bloom is mainly resulted from the increasing of nutrient concentration while zooplankton only plays a role to alleviate the scale of algal bloom, which might be used to explain the mechanism of algal bloom occurrence in many natural waters. What is more, our results provide a better understanding of the traditional manipulation method.  相似文献   

7.
A unique data set from Keszthely Bay, Lake Balaton has been applied to develop a dynamic structural model able to describe the observed changes in phytoplankton biomass and diversity. We tested whether the model reacts according to the Intermediate Disturbance Hypothesis and according to the hypothesis that ecosystem reactions attempt to maximize the thermodynamic function exergy under prevailing conditions. If the answer to these tests are confirmatory, it can be considered a support for IDH and for the use of the exergy maximization principle as a general principle to explain ecosystem reactions.  相似文献   

8.
Trophic dynamic studies of aquatic ecosystem are usually based on either dynamic or state-state models of energy and material transfer, comprising of a few functional tropic levels such as phytoplankton, primary consumers and secondary consumers. However, though benthic components (and production) are important parts of an aquatic ecosystem, they are often omitted from such approaches.Considering this inadequacy of previous simulation approaches, the aim of the present study, is to investigate the effect of benthic components on overall system dynamics. The objectives of this study are (a) to develop and study a dynamic model for Kakinada bay to understand how benthic components interact with others under a fixed set of conditions, and to find the sensitive parameters for such a benthic-pelagic coupled system (b) to study the effects of different biomasses of benthic components via scenario analysis and (c) to identify the different equilibrium states that a benthic-pelagic coupled system such as Kakinada Bay may reach.On running the simulation for a period of 5000 days (∼10+ years), the system was not seen to reach any equilibrium state; however, all state variables considered in the model were seen to coexist even at the end of this period. While zooplankton was found to be the most sensitive state variable, parameters directly associated with benthic components were indicated to be the most sensitive. Microphytobenthos was negatively correlated with phytoplankton which was corroborated by results of the perturbation scenario analyses as well. Only one equilibrium state – microphytobenthos dominated steady state was found for Kakinada Bay system when certain parameters were slightly changed.  相似文献   

9.
A simple nutrient–phytoplankton–zooplankton (NPZ)pelagic ecosystem model coupled to a two-dimensional primitiveequation circulation model with explicit mixed-layer physicsis configured in a coastal setting to study the biological responseto idealized wind-driven upwelling conditions. Conventionalecosystem model parameterization, which assumes macrozooplanktonas the target grazers, leads to upwelling-induced phytoplanktonblooms that exhaust available nutrient supply and whose zonalscale increases with wind duration. Offshore zooplankton maximaresult from upwelled water with greater total nitrogen concentrationsthan initial ambient surface water. Substantial vertical mixingin the surface boundary layer sets the vertical scale of theproductivity. Phytoplankton sinking contributes to a nearshoreaccumulation of total nitrogen, and enhances the magnitude andduration of the phytoplankton bloom. The system responds differentlywhen the zooplankton are parameterized to represent microzooplankton.The phytoplankton and zooplankton maxima have more limited zonalextent, are more independent of the duration of wind forcing,and near-surface nutrient levels remain high over most of thedomain. When winds are relaxed, the diminished offshore transportreveals the underlying biological oscillations in the microzooplankton-parameterizedecosystem, and reduced vertical mixing decouples surface fromsubsurface dynamics. In contrast, the macrozooplankton systemrelaxes to a steady state supporting limited phytoplankton andlarge zooplankton levels in the upwelling region.  相似文献   

10.
We apply mathematical modeling to explore different scenarios of invasion of a top predator (carnivorous zooplankton or planktivorous fish) into an epipelagic plankton ecosystem. We use a ‘minimal’ model of three nonlinear ordinary differential equations (nutrient–phytoplankton–herbivores) with the top predator density as a time-dependent parameter. The ecosystem shows different types of response, which can be described in terms of top-down trophic control. Our investigation indicates that under certain conditions the plankton ecosystem model demonstrates a surprising kind of response: in a wide range of realistic ecosystem parameters the invasion of the top predator leads to a prominent increase in the average density of zooplankton and to a resulting decrease of phytoplankton density. This phenomenon is opposite to the ‘typical’ top–down control when the carnivore pressure decreases zooplankton density which, in turn, increases phytoplankton biomass. We call the revealed type of top-down control ‘paradoxical’. Examples of such a response in natural aquatic ecosystems were reported earlier but no clear explanation has been provided hitherto. In this paper, we analyze possible mechanisms of ‘paradoxical top–down control’ and show that it can occur in eutrophic epipelagic ecosystems subject to high rate of cross-pycnocline exchange.  相似文献   

11.
12.
近15年长江口海域海洋生物变化趋势及健康状况评价   总被引:2,自引:0,他引:2  
杨颖  刘鹏霞  周红宏  夏利花 《生态学报》2020,40(24):8892-8904
对近15年(2004-2018年)长江口海域海洋生物变化趋势进行分析,评价海洋生物健康状况,并对陆源污染物排放与海洋生物变化进行相关性分析。结果表明,(1)长江口海域海洋生物群落结构组成发生了一定变化,与20世纪90年代末相比,浮游植物种类数有所减少,浮游动物、底栖生物种类数有所增加。浮游植物以硅藻为主,但甲藻占比有所增加,2010年以来硅藻、甲藻群落结构进入新的平衡状态;浮游动物以节肢动物为主,主要类群桡足类占比有所下降;底栖生物种类数明显升高。(2)生物多样性总体水平一般,浮游植物多样性指数总体较低,第一优势种的优势度较高;浮游动物多样性指数和丰富度指数多年呈现下降趋势;底栖生物多样性水平一般,优势种渐趋单一。(3)海洋生物总体处于"不健康"状态,主要影响指标为浮游植物密度偏高,浮游动物密度偏低、生物量偏高,底栖动物密度偏高、生物量偏低。生态系统变化与陆源主要污染物排放、营养结构变化及水体富营养化均具有一定的相关性,其中无机氮(DIN)、石油类入海通量与生物健康指数呈显著负相关关系(P < 0.05),无机磷(DIP)与底栖生物生物量呈显著负相关关系。N/P与浮游植物丰度呈显著负相关,但与浮游植物均匀度和多样性指数呈显著正相关;Si/N与浮游植物多样性指数呈显著负相关。海域严重富营养化面积比例与硅藻甲藻种类数比值呈显著正相关关系。  相似文献   

13.
湖泊生态系统健康定量评价方法   总被引:43,自引:2,他引:43  
提出了湖泊生态系统健康定量评价的一种新方法生态系统健康指数法。该方法首先设计了一个0~100的生态系统健康指数作为定量尺度,然后通过评价指标选择、各指标生态系统健康分指数计算、各指标权重计算、生态系统健康综合指数计算等基本步骤,评价湖泊生态系统健康状态。以实用实例对意大利西西里湖泊群及单个湖泊进行了生态系统健康评价。结果表明,该方法原理简单,计算简便,结果可靠、直观,既可用于同一湖泊又可用于不同湖泊生态系统健康状态的定量评价与比较,是一种值得推广的定量评价方法。  相似文献   

14.
In this paper, a three-tier model of phytoplankton, zooplankton and nutrient is considered and stability of different equilibrium points is analyzed along with Hopf-bifurcation around coexisting equilibrium point. Here, we have assumed toxication process as the guiding factor for bloom formation as well as its termination and this process is incorporated into our model by choosing the zooplankton grazing function as a Monod–Haldane function due to the phytoplankton toxicity. Extensive numerical simulations have been performed to validate the analytical findings and these simulation work reveal the chaotic oscillation exhibited by the model system for certain choice of the parameter values.  相似文献   

15.
The patterns of the seasonal dynamics of species composition, abundance, biomass, and ration of zooplankton in the Curonian Lagoon of the Baltic Sea have been considered. It is shown that zooplankton can consume up to 17–21% of the phytoplankton primary production. Of this, 7–8% of the primary production is transformed into secondary production and can be used by invertebrates and fishes. The structural and functional characteristics of zooplankton (index and coefficient of the trophic state, the number of dominating species, and the Shannon index by biomass) can be used to assess the waterbody trophic state.  相似文献   

16.
Three levels of chemical communications involved plankton Crustacea are considered: 1) Influence of zooplankton excretion on phytoplankton; 2) Influence of zooplankton excretion on the individuals of the same or other species of the same trophic level; 3) Influence of chemical cues released by predatory zooplankton and fish on herbivorous zooplankton. The data on the influence of excreted cues on some physiological (growth, reproduction, feeding, etc.) and behavioural (vertical and horizontal migrations) characters of planktonic crustaceans are presented. Ecological role and chemistry cues responsible for the interactions of different trophic levels can be different. It is considered that chemical communications in aquatic ecosystems can be provided with: 1) Species-specific cues that strictly influence particular biological functions (communication system of feromone type); 2) Non-specific cues that strictly influence particular functions (system of regulator, that act at the whole ecosystem as the hormonal system of an organism). 3) Non-specific substances with broad (non-specidic) influence--toxic substances of "biocondition substances" according to classification of Novikov and Kharlamova (2000).  相似文献   

17.
徐姗楠  陈作志  何培民   《生态学报》2008,28(5):2065-2065~2072
根据2006年在杭州湾北岸大型围隔海域进行的生态调查数据,利用EwE软件构建围隔海域人工生态系统的能量流动模型.模型由13个功能组构成,分别是肉食性鱼类、底栖捕食鱼类、浮游动物性鱼类、草食性鱼类、蟹类、虾类、软体动物、底栖动物、肉食性浮游动物、植食性浮游动物、大型藻类、浮游植物和有机碎屑,每一组都代表在生态系统中具有相似地位的有机体,基本覆盖了该人工生态系统能量流动的主要过程.能量流动分析表明,围隔海域人工生态系统中能量流动主要以碎屑食物链途径为主,其中植食性浮游动物在能量从低级向高层次转换中起关键作用.人工生态系统的营养级范围为1.00~3.90级,系统的能量流动主要有6级,来自初级生产者的能流效率为9.4%,来自碎屑的转换效率为9.8%,平均能量转换效率为9.6%.经生态网络分析,直接来源于碎屑的比例占总流量的57%,而直接来源于初级生产者的比例为43%,生态系统特征参数:总初级生产计算量/总呼吸量(TPP/TR)、系统物质和能量循环率(FCI)和系统聚合度(A)值分别为2.672、0.25、0.315,表明围隔海域人工生态系统目前正处于发育时期.该研究为首次利用Ecopath模型分析大型围隔海域人工生态系统的结构和能量流动,旨在为富营养化近岸海域的生态修复提供理论依据.  相似文献   

18.
We performed a methodological study aimed at extending our previously developed approach to quantify the ecological stability of biotic communities and an entire ecosystem, using Lake Kinneret as a case study. The ecological stability of the biotic communities (phytoplankton and zooplankton) of Lake Kinneret was estimated using two different aggregating schemes. The first scheme used the combined stability index, based on the combined indices of the individual phytoplankton (SI[Comb]P) and zooplankton (SI[Comb]Z) taxonomic groups. The total community stability index was calculated based on the total abundances of these communities. The stability of the entire ecosystem was estimated for two sets of ecosystem state variables, a lake “trophic state” set and a “water quality” set, which provided considerably different estimates of the lake ecosystem stability. Good agreement between the results of this study and qualitative estimates of Lake Kinneret stability validates the suitability of this approach to estimate the stability of different ecological units.  相似文献   

19.
Harmful algal blooms (HABs) characterized by a large concentration of toxic species appear rather rarely, but have a severe impact on the whole ecosystem. To study on possible trigger mechanisms for the emergence of HABs, we consider a nutrient-phytoplankton-zooplankton model to find the conditions under which a toxic phytoplankton species is able to form a bloom by winning the competition against its nontoxic competitor. The basic mechanism is related to the excitability of the system, i.e., the ability to develop a large response on certain perturbations. In a large class of models, a HAB results from a combined effect of nutrient enrichment and selective predation on different phytoplankton populations by zooplankton. We show that the severity of HAB is controlled by nutrient enrichment and zooplankton abundance, while the frequency of its occurrence depends on the strength of selectivity of predation. Thereby the intricate interplay between excitability, competition, and selective grazing pressure builds the backbone of the mechanism of the emergence of HABs.  相似文献   

20.
With the implementation of the EU Water Framework Directive (WFD), the member states have to classify the ecological status of surface waters following standardised procedures. It was a matter of some surprise to lake ecologists that zooplankton were not included as a biological quality element (BQE) despite their being considered to be an important and integrated component of the pelagic food web. To the best of our knowledge, the decision of omitting zooplankton is not wise, and it has resulted in the withdrawal of zooplankton from many so-far-solid monitoring programmes. Using examples from particularly Danish, Estonian, and the UK lakes, we show that zooplankton (sampled from the water and the sediment) have a strong indicator value, which cannot be covered by sampling fish and phytoplankton without a very comprehensive and costly effort. When selecting the right metrics, zooplankton are cost-efficient indicators of the trophic state and ecological quality of lakes. Moreover, they are important indicators of the success/failure of measures taken to bring the lakes to at least good ecological status. Therefore, we strongly recommend the EU to include zooplankton as a central BQE in the WFD assessments, and undertake similar regional calibration exercises to obtain relevant and robust metrics also for zooplankton as is being done at present in the cases of fish, phytoplankton, macrophytes and benthic invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号