首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The association of phytoplankton with bacteria is ubiquitous in nature and the bacteria that associate with different phytoplankton species are very diverse. The influence of these bacteria in the physiology and ecology of the host and the evolutionary forces that shape the relationship are still not understood. In this study, we used the Pseudo-nitzschia–microbiota association to determine (1) if algal species with distinct domoic acid (DA) production are selection factors that structures the bacterial community, (2) if host-specificity and co-adaptation govern the association, (3) the functional roles of isolated member of microbiota on diatom–hosts fitness and (4) the influence of microbiota in changing the phenotype of the diatom hosts with regards to toxin production. Analysis of the pyrosequencing-derived 16S rDNA data suggests that the three tested species of Pseudo-nitzschia, which vary in toxin production, have phylogenetically distinct bacterial communities, and toxic Pseudo-nitzschia have lower microbial diversity than non-toxic Pseudo-nitzschia. Transplant experiments showed that isolated members of the microbiota are mutualistic to their native hosts but some are commensal or parasitic to foreign hosts, hinting at co-evolution between partners. Moreover, Pseudo-nitzschia host can gain protection from algalytic bacteria by maintaining association with its microbiota. Pseudo-nitzschia also exhibit different phenotypic expression with regards to DA production, and this depends on the bacterial species with which the host associates. Hence, the influences of the microbiota on diatom host physiology should be considered when studying the biology and ecology of marine diatoms.  相似文献   

2.
The marine algal biotoxin, domoic acid (DA), is produced by certain members of the diatom genus Pseudo-nitzschia. This neurotoxin has been responsible for several mass mortality events involving marine birds and mammals. In all cases, the toxin was transferred from its algal producers through marine food webs by one or more intermediate vectors. The ability of some copepod taxa to serve as vectors for DA has been demonstrated; however, the role played in DA trophic transfer by Calanus finmarchicus, which often dominates N. Atlantic zooplankton assemblages and is a primary dietary component of the highly endangered N. Atlantic right whale (Eubalaena glacialis), has been uncertain. In the present study, we examined the ability of C. finmarchicus to consume DA-producing algae and retain the toxin. Results of grazing and toxin accumulation/depuration experiments showed that C. finmarchicus consumed DA-producing Pseudo-nitzschia multiseries regardless of the presence or absence of morphologically similar, but non-toxic, P. pungens, across initial cell concentrations ranging from 1000-4000 cells mL− 1. Furthermore, C. finmarchicus did not appear to preferentially consume or avoid either Pseudo-nitzschia species tested. After ingestion of P. multiseries, copepods accumulated DA and retained it for up to 48 h post-removal of the toxin source. These findings provide evidence for the potential of C. finmarchicus to facilitate DA trophic transfer in marine food webs where toxic Pseudo-nitzschia is present.  相似文献   

3.
The genus Pseudo-nitzschia has attracted attention because of production of the toxin, domoic acid (DA), causing Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia blooms occur frequently in Chinese coastal waters, and DA has been detected in several marine organisms, but so far no Pseudo-nitzschia strains from Chinese waters have been shown to produce DA. In this study, monoclonal Pseudo-nitzschia strains were established from Chinese coastal waters and examined using light microscopy, electron microscopy and molecular markers. Five strains, sharing distinct morphological and molecular features differentiating them from other Pseudo-nitzschia species, represent a new species, Pseudo-nitzschia simulans sp. nov. Morphologically, the taxon belongs to the P. pseudodelicatissima group, cells possessing a central nodule and each stria comprising one row of poroids. The new species is characterized by the poroid structure, which typically comprises two sectors, each sector located near opposite margins of the poroid. The production of DA was examined by liquid chromatography tandem mass spectrometry (LC–MS/MS) analyses of cells in stationary growth phase. Domoic acid was detected in one of the five strains, with concentrations around 1.05–1.54 fg cell−1. This is the first toxigenic diatom species reported from Chinese waters.  相似文献   

4.
《Harmful algae》2010,9(6):880-888
The ability to detect harmful algal bloom (HAB) species and their toxins in real- or near real-time is a critical need for researchers studying HAB/toxin dynamics, as well as for coastal resource managers charged with monitoring bloom populations in order to mitigate their wide ranging impacts. The Environmental Sample Processor (ESP), a robotic electromechanical/fluidic system, was developed for the autonomous, subsurface application of molecular diagnostic tests and has successfully detected several HAB species using DNA probe arrays during field deployments. Since toxin production and thus the potential for public health and ecosystem effects varies considerably in natural phytoplankton populations, the concurrent detection of HAB species and their toxins onboard the ESP is essential. We describe herein the development of methods for extracting the algal toxin domoic acid (DA) from Pseudo-nitzschia cells (extraction efficiency >90%) and testing of samples using a competitive ELISA onboard the ESP. The assay detection limit is in the low ng/mL range (in extract), which corresponds to low ng/L levels of DA in seawater for a 0.5 L sample volume acquired by the ESP. We also report the first in situ detection of both a HAB organism (i.e., Pseudo-nitzschia) and its toxin, domoic acid, via the sequential (within 2–3 h) conduct of species- and toxin-specific assays during ESP deployments in Monterey Bay, CA, USA. Efforts are now underway to further refine the assay and conduct additional calibration exercises with the aim of obtaining more reliable, accurate estimates of bloom toxicity and thus their potential impacts.  相似文献   

5.
Over the past decade diatom blooms of domoic acid (DA)-producing Pseudo-nitzschia spp. have been responsible for numerous marine mammal and bird mortalities in Monterey Bay, CA. One possible toxin vector is the market squid, Loligo opalescens, a small pelagic mollusk that plays an important role in the near-shore food web of the California Current ecosystem as a favored vertebrate prey species. This study examined the trophic link between toxic Pseudo-nitzschia and L. opalescens using toxin and stomach content analyses of animals collected from Monterey Bay, CA in 2000. Receptor binding assay data (confirmed by tandem mass spectrometry), demonstrated the presence of DA in squid during a toxic Pseudo-nitzschia event, with P. australis frustules observed in stomach samples. Though DA levels were low (<0.5 μg DA g−1 tissue) in L. opalescens during the study period, it is now clear that this potent neurotoxin can occur in squid and is likely delivered through its krill prey species, which are known to retain DA after feeding on toxic Pseudo-nitzschia. Our findings suggest that further study of the relationship between Pseudo-nitzschia blooms and DA contamination of squid is warranted to better evaluate the potential health risk to humans and wildlife associated with this major commercial seafood species and important prey item.  相似文献   

6.
A mechanistic model has been developed to explore the factors controlling the production of domoic acid (DA) by the pennate diatom Pseudo-nitzschia. The idealized model allows consideration of the uncoupling between photosynthesis and growth, while DA production has been set as a secondary metabolism sharing common precursors with growth. Under growth limitation, these precursors can accumulate, resulting in an increased DA production. The model was first evaluated based on its ability to simulate the observed DA production by either silicon (Si) or phosphorus (P) limited batch cultures of Pseudo-nitzschia available in the literature. Sensitivity tests were further performed to explore how the ambient nutrients and the light regime (intensity and photoperiod length) are possibly directing the Pseudo-nitzschia toxicity. The general pattern that emerged is that excess light, in combination with Si or P limitation, favours DA production, provided nitrogen (N) is sufficient. Model simulations with varying nutrient stocks supporting Pseudo-nitzschia blooms under non-limiting light suggest two potential ways for nutrients to control DA production. First, N excess in comparison to available Si and P relieves DA production from its limitation by N, an absolute requirement of the DA molecule. Second, increased nutrient stocks amplify the DA production phase of the blooms (in addition to enhancing Pseudo-nitzschia biomass) which leads to an even more toxigenic bloom. Simulations investigating the light regime suggest a light threshold below which an important delay in DA production could be expected in Pseudo-nitzschia cultures. In the natural environment, the monitoring of light conditions during Pseudo-nitzschia blooms might help to anticipate the magnitude of the toxic event. Pseudo-nitzschia toxicity is indeed linked to the excess of primary carbon that accumulates during photosynthesis under growth limitation by nutrients.  相似文献   

7.
Within the past few decades, harmful algal blooms (HABs) have occurred frequently in Indonesian waters, resulting in environmental degradation, economic loss and human health problems. So far, HAB related studies mainly addressed ecological traits and species distribution, yet toxin measurements were virtually absent for Indonesian waters. The aim of the present study was to explore variability of the potentially toxic marine diatom genus Pseudo-nitzschia, as well as its neurotoxin domoic acid as a function of environmental conditions in Ambon Bay, eastern Indonesia. Weekly phytoplankton samples, oceanographic (CTD, nutrients) and meteorological (precipitation, wind) parameters were analyzed at 5 stations in the bay during the dry and wet seasons of 2018. Liquid chromatography – tandem mass spectrometry (LC–MS/MS) was used to detect particulate DA (pDA). Vegetative cells of Pseudo-nitzschia spp. and pDA were found in 98.6% and 51.4% of the samples, respectively. pDA levels were low, yet detected throughout the campaign, implying that Ambon Bay might potentially be subject to amnesic shellfish poisoning. The highest levels of both Pseudo-nitzschia spp. cell abundance and pDA were found in the wet season, showing a strong positive correlation between both parameters, compared to the dry season, (r = 0.87 and r = 0.66 (p < 0.01), respectively). Statistical analyses revealed that temperature and mixed layer depth positively correlated with Pseudo-nitzschia spp. and pDA during the dry season, while ammonium showed positive correlations in both seasons. This study represents the first successful investigation of the presence and variability of Pseudo-nitzschia spp. and its neurotoxin DA in Indonesian waters.  相似文献   

8.
The ability to detect harmful algal bloom (HAB) species and their toxins in real- or near real-time is a critical need for researchers studying HAB/toxin dynamics, as well as for coastal resource managers charged with monitoring bloom populations in order to mitigate their wide ranging impacts. The Environmental Sample Processor (ESP), a robotic electromechanical/fluidic system, was developed for the autonomous, subsurface application of molecular diagnostic tests and has successfully detected several HAB species using DNA probe arrays during field deployments. Since toxin production and thus the potential for public health and ecosystem effects varies considerably in natural phytoplankton populations, the concurrent detection of HAB species and their toxins onboard the ESP is essential. We describe herein the development of methods for extracting the algal toxin domoic acid (DA) from Pseudo-nitzschia cells (extraction efficiency >90%) and testing of samples using a competitive ELISA onboard the ESP. The assay detection limit is in the low ng/mL range (in extract), which corresponds to low ng/L levels of DA in seawater for a 0.5 L sample volume acquired by the ESP. We also report the first in situ detection of both a HAB organism (i.e., Pseudo-nitzschia) and its toxin, domoic acid, via the sequential (within 2–3 h) conduct of species- and toxin-specific assays during ESP deployments in Monterey Bay, CA, USA. Efforts are now underway to further refine the assay and conduct additional calibration exercises with the aim of obtaining more reliable, accurate estimates of bloom toxicity and thus their potential impacts.  相似文献   

9.
Toxic species of the diatom genus Pseudo-nitzschia, observed worldwide from coastal waters to the open ocean, produce the neurotoxin domoic acid (DA). DA is an important environmental and economic hazard due to shellfish contamination with subsequent effects on higher trophic levels. Previous research has demonstrated that, among other environmental factors, salinity influences the abundance and toxicity of Pseudo-nitzschia. In this study, the environmental factors driving the growth of Pseudo-nitzschia and the production of dissolved DA (dDA) in North Inlet estuary were examined. The effect of salinity on the growth inhibition of phytoplankton induced by the initial presence as well as by an addition of dDA was also assessed. Initially, the diatom abundance was negatively correlated with the abundance of Pseudo-nitzschia and with the concentration of dDA. With the addition of a concentrated solution of dDA, the percent inhibition of cryptophytes and diatoms was significantly correlated with salinity and suggested a higher sensitivity to dDA at extreme salinities. These results emphasize the importance of salinity in assessing the properties of DA and potentially of other phycotoxins on phytoplankton.  相似文献   

10.
Marine birds have been hypothesized to be underreported victims of harmful algal blooms (HABs). Toxic blooms of Pseudo-nitzschia spp., the primary amnesic toxin producer microalgae, domoic acid (DA) are known to cause massive mortalities of coastal seabirds and marine mammals around the world. However, these fatalities are only detected when birds die nearby the coastline and little is known about possible outbreaks of pelagic seabirds in oceanic areas. Here we aim to understand whether pelagic seabirds are exposed to amnesic shellfish poisoning (ASP) toxins. For this purpose, we tracked pelagic seabirds feeding on small epipelagic fish and squid, reported to be vectors of DA, which are obtained in high productivity zones where intense Pseudo-nitzschia blooms regularly occur. In particular, we tracked Cory’s (Calonectris borealis) and Scopoli’s (C. diomedea) shearwaters breeding in Gran Canaria (Canary Is.) and in Menorca (Balearic Is.) and feeding on the Canary Current region and the Catalonian coast, respectively. We sampled birds for blood at the recovery of the GPS (Global Positioning System) and analyzed it for DA determination by Liquid Chromatography coupled with Tandem Mass Spectrometry (LC–MS/MS). Among the 61 samples analyzed from Gran Canaria, and 87 from Menorca, 31 (50.8%) and 28 (32.2%) from each location presented detectable levels of DA ranging 1.0–10.6 ng mL−1. This work reveals that DA can be detected at variable levels in the blood of ASP-asymptomatic shearwaters and suggests a chronic exposure of shearwaters to DA, highlighting the need for further studies on DA effects. These results are of high relevance due to the vulnerability of these marine birds, which populations are in continuous decline. Since global warming is expected to alter and increase the occurrence of HABs, marine toxins might become an additional stressor for seabirds and exacerbate the already precarious conservation status of many species.  相似文献   

11.
《Harmful algae》2011,10(6):540-547
We conducted field and laboratory experiments to determine whether the Pseudo-nitzschia-derived metabolite, domoic acid (DA), functions as a microzooplankton grazing suppressant. Using the seawater dilution technique in natural plankton communities along the Pacific Northwest coast, we found no significant relationship between dissolved DA and microzooplankton grazing rate on Pseudo-nitzschia spp. Dilution experiments amended with either 50 or 80 nM dissolved DA also showed no evidence that microzooplankton community grazing was affected by DA. The relationship between Pseudo-nitzschia spp. intracellular DA and microzooplankton grazing was less clear. On a subset of data where small Pseudo-nitzschia spp. cells dominated community composition, an apparent negative relationship between intracellular DA and microzooplankton grazing was observed. However, we provide evidence that this relationship is a microzooplankton response to Pseudo-nitzschia spp. growth rate, rather than cellular DA. In laboratory experiments, two diatom-consuming dinoflagellates, Protoperidinium excentricum and P. pellucidum, were fed single and mixed diets of a toxic and non-toxic Pseudo-nitzschia species and an optimal prey, Ditylum brightwellii. P. excentricum did not grow or ingest either the toxic or non-toxic Pseudo-nitzschia. However, P. pellucidum grew as well on the toxic Pseudo-nitzschia multiseries as it did on D. brightwellii, but did not grow on the non-toxic Pseudo-nitzschia pungens. Both dinoflagellates were capable of growing if Pseudo-nitzschia spp. diets were mixed with D. brightwellii. Addition of dissolved DA also had no negative effect on dinoflagellate growth when fed the optimal diatom diet. We conclude that domoic acid has no functional role in deterring microzooplankton grazing or growth rates. Further, our findings highlight the difficulty of defining the complex mechanisms that regulate predator and prey interactions within microplankton food webs.  相似文献   

12.
Marine planktonic diatoms of the genus Pseudo-nitzschia Peragallo have been responsible for amnesic shellfish poisoning (ASP) events worldwide through the production of the neurotoxin domoic acid (DA). The appearance and toxicity of Pseudo-nitzschia species is variable throughout the year and potentially linked to changes in environmental parameters; many ASP events occur in relatively high latitudes where day length is particularly variable with season. In UK waters, shellfish monitoring has prevented any impact on human health but has led to long-term closures of fisheries, with severe economic consequences. Laboratory experiments on two Pseudo-nitzschia species typically found in Scottish West Coast waters during spring (short photoperiod (SP)) and summer (long photoperiod (LP)) conditions were conducted to determine the influence of photoperiod on their growth and toxicity. Results indicated that non-toxic P. delicatissima (Cleve) Heiden achieved a greater cell density under SP (9-h light:15-h dark (L:D) cycle). For toxin-producing P. seriata (Cleve) H. Peragallo, a LP (18-h L:6-h D cycle) resulted in an enhanced growth rate, cell yield and total toxin production, but it decreased the toxin production per cell. A better understanding of the response of Pseudo-nitzschia species to photoperiod and other foreseeable environmental variables may help predict the appearance of toxic strains.  相似文献   

13.
Abundances of Pseudo-nitzschia spp. and concentrations of particulate domoic acid (DA) were determined in the Southern California Bight (SCB) along the coasts of Los Angeles and Orange Counties during spring and summer of 2003 and 2004. At least 1500 km2 were affected by a toxic event in May/June of 2003 when some of the highest particulate DA concentrations reported for US coastal waters were measured inside the Los Angeles harbor (12.7 μg DA L−1). Particulate DA levels were an order of magnitude lower in spring of 2004 (February and March), but DA concentrations per cell at several sampling stations during 2004 exceeded previously reported maxima for natural populations of Pseudo-nitzschia (mean = 24 pg DA cell−1, range = 0–117 pg DA cell−1). Pseudo-nitzschia australis dominated the Pseudo-nitzschia assemblage in spring 2004. Overall, DA-poisoning was implicated in >1400 mammal stranding incidents within the SCB during 2003 and 2004. Ancillary physical and chemical data obtained during our regional surveys in 2004 revealed that Pseudo-nitzschia abundances, particulate DA and cellular DA concentrations were inversely correlated with concentrations of silicic acid, nitrogen and phosphate, and to specific nutrient ratios. Particulate DA was detected in sediment traps deployed at 550 and 800 m depth during spring of 2004 (0.29–7.6 μg DA (g sediment dry weight)−1). The highest DA concentration in the traps was measured within 1 week of dramatic decreases in the abundances of Pseudo-nitzschia in surface waters. To our knowledge these are the deepest sediment trap collections from which DA has been detected. Sinking of the spring Pseudo-nitzschia bloom may constitute a potentially important link between DA production in surface waters and benthic communities in the coastal ocean near Los Angeles. Our study indicates that toxic blooms of Pseudo-nitzschia are a recurring phenomenon along one of the most densely populated coastal stretches of the SCB and that the severity and magnitude of these events can be comparable to or greater than these events in other geographical regions affected by domoic acid.  相似文献   

14.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

15.
Toxic Pseudo-nitzschia australis strains isolated from French coastal waters were studied to investigate their capacity to adapt to different salinities. Their acclimation to different salinity conditions (10, 20, 30, 35, and 40) was studied on growth, photosynthetic capacity, cell biovolume, and domoic acid (DA) content. The strains showed an ability to acclimate to a salinity range from 20 to 40, with optimal growth rates between salinities 30 and 40. The highest cell biovolume was observed at the lowest salinity 20 and was associated with the lowest growth rate. Salinity did not affect the photosynthetic activity; Fv/Fm values and the pigment contents remained high with no significant difference among salinities. An enhanced production of zeaxanthin was, however, observed in the late stationary and decline phases in all cultures except for those acclimated to salinity 20. In terms of cellular toxin content, DA concentrations were 2 to 3-fold higher at the lowest salinity (20) than at the other salinities and were combined with a low amount of dissolved DA. The fact that P. australis accumulate more DA per cell in less saline waters, illustrates that climate-related changes in salinity may affect Pseudo-nitzschia physiology through direct effects on growth, physiology, and toxin content.  相似文献   

16.
Over 1200 samples were collected from Louisiana estuarine and coastal shelf waters between 1989 and 2002, and analyzed to examine the population dynamics of Pseudo-nitzschia and to assess the potential threat posed by domoic acid (DA), a potent neurotoxin produced by some members within this toxigenic diatom genus. Results demonstrated that three species in this region (Pseudo-nitzschia multiseries, P. pseudodelicatissima complex, P. delicatissima) produce DA, and that particulate toxin levels were highest (up to 3.05 μg L−1) during the spring bloom, while cellular concentrations were highest in the winter/early spring when P. multiseries was most abundant (up to 30 pg cell−1). These particulate toxin levels are comparable to those seen in other regions (e.g., United States west coast) where DA poisoning events have occurred in the past. Pseudo-nitzschia were most abundant under dissolved inorganic nitrogen-replete conditions coupled with lower silicate and/or phosphate concentrations, and in the early spring months when temperatures were cooler. Pseudo-nitzschia were occasionally well-represented in the phytoplankton assemblage (≥106 cells L−1 in 14% of samples, over 50% of total phytoplankton in 5% of samples), indicating that planktivores (e.g., Gulf menhaden, Brevoortia patronus) may have little choice but to consume Pseudo-nitzschia cells, thereby providing potential vectors for DA transfer to higher trophic levels. By comparison, eastern oysters (Crassostrea virginica) present in estuarine waters may be more exposed to this toxin when Pseudo-nitzschia cells are part of a mixed assemblage, reducing selective grazing by these bivalves. C. virginica may thus represent the most effective vector for DA exposure in humans.  相似文献   

17.
Domoic acid (DA), produced by marine diatom species in the genus Pseudo-nitzschia, is a potent excitotoxin linked since the late 1990s to massive marine mammal and seabird mortalities along the California coast. These and a previous incident involving human intoxication and deaths prompted many studies, some of which have unveiled the trophic transfer of DA from benthic invertebrates and planktivorous fish to top predators, demonstrating serious health risk to marine wildlife and humans. Top predator populations that may be more adversely affected by DA include those with narrow geographical distribution or those that are already in decline as a result of other environmental stressors or natural cyclic fluctuations. However, to date no studies have attempted to assess the population effects of recurrent exposures to DA on any of the affected wildlife species. Ecological risk assessment can help to identify DA effects on wildlife, but meaningful assessments require the integration of many types of information, often not available to conduct such studies. Hence, determining short- and long-term effects on marine wildlife populations is rather challenging. The purpose of this review is to highlight recent research efforts and information gaps, and the need for interdisciplinary programs that allow collaborative wildlife population risk assessments of critical species.  相似文献   

18.
A toxic bloom of Pseudo-nitzschia spp. was observed in the Alabama coastal waters of the northern Gulf of Mexico (NGOM) in June 2009 that resulted in the accumulation of domoic acid (DA) in fish. The bloom initiated following a large storm event that likely caused increased groundwater discharge 16–20 days prior to peak densities. Eleven sites, located in littoral shoreline waters and inshore embayments spanning the entire Alabama NGOM coastline, were sampled during peak densities to assess Pseudo-nitzschia species composition and toxicity, and associated water-quality parameters. Small fish (0.27–11.9 g body weight) were collected at six of these sites for analysis of DA content. High Pseudo-nitzschia spp. densities (8.27 × 104–5.05 × 106 cell l−1) were detected at eight sites located in the littoral shoreline and particulate DA was detected at six of these littoral sites (48.0–540 pg ml−1). The bloom consisted primarily (>90%) of Pseudo-nitzschia subfraudulenta, a species previously characterized as forming only a minor component of Pseudo-nitzschia assemblages and not known to produce DA. Pseudo-nitzschia spp. were at low densities or not detected at the inshore sites and DA was detected at these sites. Pseudo-nitzschia spp. density varied along an estuarine gradient, with greater densities occurring in the most saline, clear, and nutrient-poor waters. Cell density was strongly and negatively correlated with silicate (Si) concentrations and the ratios of silicate to dissolved inorganic nitrogen and phosphate (Si:DIN and Si:PO4). Cell toxin quota was negatively correlated with phosphate, and strongly and positively correlated with the ratio of total nitrogen to total phosphorus (TN:TP). These relationships are consistent with previous observations that indicate Pseudo-nitzschia spp. density and toxicity are likely to be greater in high salinity, high irradiance, and nutrient-poor waters. DA was detected in 128 of 131 (98%) of the fish collected, which included seven primary and secondary consumer species. This is the first demonstration of trophic transfer of DA in this region of the NGOM, indicating that toxic blooms of Pseudo-nitzschia spp. in Alabama coastal waters have the potential to transfer DA to recreationally and commercially important fish species.  相似文献   

19.
Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.  相似文献   

20.
A toxic Pseudo-nitzschia spp. bloom in the Todos Santos Bay area (31.8°N), Mexico, is described. This is the southernmost report of the presence of domoic acid (DA) in the California Current System and it is also the first report of the distribution of toxic Pseudo-nitzschia species and DA on the Baja California west coast. The maximum cell abundance of Pseudo-nitzschia was 3.02 × 105 cells L?1 and the maximum concentration of DA in particulate matter (pDA) was 0.86 μg L?1. P. australis constituted the major proportion of cells identified as Pseudo-nitzschia. The environmental conditions associated with wind-driven upwelling were the cause for the accumulation of toxic cells. Maximum pDA and cell concentration were detected around 14 °C. The ratio of the concentration of macronutrients seemed to be the important factor for the accumulation of P. australis. The highest cell abundance was detected in areas with a high Si(OH)4 to N ratio in the entire water column. Therefore, the relative increase of silicate concentration related to upwelling conditions was the probable cause for the accumulation of P. australis. Maximum photosystem II (PSII) quantum efficiency of charge separation (Fv/Fm) was negatively correlated to the pDA to fucoxanthin ratio. This ratio was used in this work as an index of cellular DA content. Therefore, the photosynthetic competence of the cells might be an important factor that affected their DA cellular content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号