首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we deal with a general class of spatially distributed periodic SIS epidemic models with two time scales. We let susceptible and infected individuals migrate between patches with periodic time dependent migration rates. The existence of two time scales in the system allows to describe certain features of the asymptotic behavior of its solutions with the help of a less dimensional, aggregated, system. We derive global reproduction numbers governing the general spatially distributed nonautonomous system through the aggregated system. We apply this result when the mass action law and the frequency dependent transmission law are considered. Comparing these global reproductive numbers to their non spatially distributed counterparts yields the following: adequate periodic migration rates allow global persistence or eradication of epidemics where locally, in absence of migrations, the contrary is expected.  相似文献   

2.
Pulse vaccination strategy in the SIR epidemic model   总被引:34,自引:0,他引:34  
Theoretical results show that the measles ‘pulse’ vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies.  相似文献   

3.
In this work we extend approximate aggregation methods in time discrete linear models to the case of time varying environments. Approximate aggregation consists in describing some features of the dynamics of a general system involving many coupled variables in terms of the dynamics of a reduced system with a few number of variables. We present a time discrete time varying model in which we distinguish two time scales. By using perturbation methods we transform the system to make the global variables appear and build up the aggregated system. The asymptotic relationships between the general and aggregated systems are explored in the cases of a cyclically varying environment and a changing environment in process of stabilization. We show that under quite general conditions the knowledge of the behavior of the aggregated system characterizes that of the general system. The general method is also applied to aggregate a multiregional time dependent Leslie model showing that the aggregated model has demographic rates depending on the equilibrium proportions of individuals in the different patches.  相似文献   

4.
The aim of this work is to study the effects of different individual behaviours on the overall growth of a spatially distributed population. The population can grow on two spatial patches, a source and a sink, that are connected by migrations. Two time scales are involved in the dynamics, a fast one corresponding to migrations and a slow one associated with the local growth on each patch. Different scenarios of density-dependent migration are proposed and their effects on the population growth are investigated. A general discussion on the use of aggregation methods for the study of integration of different ecological levels is proposed.  相似文献   

5.
We consider host–parasitoid systems spatially distributed on a row of patches connected by dispersal. We analyze the effects of dispersal frequency, dispersal asymmetry, number of patches and environmental gradients on the stability of the host–parasitoid interactions. To take into account dispersal frequency, the hosts and parasitoids are allowed to move from one patch to a neighboring patch a certain number of times within a generation. When this number is high, aggregation methods can be used to simplify the proposed initial model into an aggregated model describing the dynamics of both the total host and parasitoid populations. We show that as the number of patches increases less asymmetric parasitoid dispersal rates are required for stability. We found that the 'CV2>1 rule' is a valid approximation for stability if host growth rate is low, otherwise the general condition of stability we establish should be preferred. Environmental variability along the row of patches is introduced as gradients on host growth rate and parasitoid searching efficiency. We show that stability is more likely when parasitoids move preferentially towards patches where they have high searching efficiency or when hosts go mainly to patches where they have a low growth rate.  相似文献   

6.
The effect of genetic drift in spatially distributed dispersal-linked and density-regulated populations is studied in a classical one-locus two-allele system. We analyse emergence of genetic differentiation assuming random drift only, where the noise-like variability is due to demographic stochasticity. We find emergence of clusters of sub-units with local allele fixation and persistence of both alleles in lengthy simulations. We demonstrate that local allele fixation (extending over a number of adjoining spatial sub-units) – without global loss of alleles – may occur when the carrying capacities of local patches are small, under a full range population dynamic regimes, when dispersal rate is small, and when redistribution (through dispersal) does not act as global mixer. These results are novel. The key to the observations is that drift is simultaneously influenced by distance-dependent dispersal, demographic stochasticity and autocorrelated population fluctuations due to delayed-density dependence. These are standard elements of contemporary population models in spatially structured context. With stable large populations, no stochasticity and dispersal limited to neighbours only, our model collapses to the stepping-stone model, while with dispersal being random and global, the model collapses to Wright's island model.  相似文献   

7.
Aim The objective of conservation planning is often to prioritize patches based on their estimated contribution to metapopulation or metacommunity viability. The contribution that an individual patch makes will depend on its intrinsic characteristics, such as habitat quality, as well as its location relative to other patches, its connectivity. Here we systematically evaluate five patch value metrics to determine the importance of including an estimate of habitat quality into the metrics. Location We tested the metrics in landscapes designed to represent different degrees of variability in patch quality and different levels of patch aggregation. Methods In each landscape, we simulated population dynamics using a spatially explicit, continuous time metapopulation model linked to within patch logistic growth models. We tested five metrics that are used to estimate the contribution that a patch makes to metapopulation viability: two versions of the probability of connectivity index, two versions of patch centrality (a graph theory metric) and the metapopulation capacity metric. Results All metrics performed best in environments where patch quality was very variable and high quality patches were aggregated. Metrics that incorporated some measure of patch quality did better in all environments, but did particularly well in environments with high variance of patch quality and spatial aggregation of good quality patches. Main conclusions Including an estimate of patch quality significantly increased the ability of a given connectivity metric to rank correctly habitat patches according to their contribution to metapopulation viability. Incorporating patch quality is particularly important in landscapes where habitat quality is highly variable and good quality patches are spatially aggregated. However, caution should be used when applying patch metrics to homogeneous landscapes, even if good estimates of patch quality are available. Our results demonstrate that landscape structure and the degree of variability in patch quality need to be assessed prior to selecting a suitable method for estimating patch value.  相似文献   

8.
The transmission of waterborne pathogens is a complex process that is heavily linked to the spatial characteristics of the underlying environmental matrix as well as to the temporal variability of the relevant hydroclimatological drivers. In this work, we propose a time-varying, spatially explicit network model for the dynamics of waterborne diseases. Applying Floquet theory, which allows to extend results of local stability analysis to periodic dynamical systems, we find conditions for pathogen invasion and establishment in systems characterized by fluctuating environmental forcing, thus extending to time-varying contexts the generalized reproduction numbers recently obtained for spatially explicit epidemiology of waterborne disease. We show that temporal variability may have multifaceted effects on the invasion threshold, as it can either favor pathogen invasion or make it less likely. Moreover, environmental fluctuations characterized by distinctive geographical signatures can produce diversified, highly nontrivial effects on pathogen invasion. Our study is complemented by numerical simulations, which show that pathogen establishment is neither necessary nor sufficient for large epidemic outbreaks to occur in time-varying environments. Finally, we show that our framework can be used to reliably characterize the early geography of epidemic outbreaks triggered by fluctuating environmental conditions.  相似文献   

9.
This article is a review of spatial aggregation of variables for time continuous models. Two cases are considered. The first case corresponds to a discrete space, i.e. a set of discrete patches connected by migrations, which are assumed to be fast with respect to local interactions. The mathematical model is a set of coupled ordinary differential equations (O.D.E.). The spatial aggregation allows one to derive a global model governing the time variation of the total numbers of individuals of all patches in the long term. The second case considers a continuous space and is a set of partial differential equations (P.D.E.). In that case, we also assume that diffusion is fast in comparison with local interactions. The spatial aggregation allows us again to obtain an O.D.E. governing the total population density, which is obtained by integration all over the spatial domain, at the slow time scale. These aggregations of variables are based on time scales separation methods which have been presented largely elsewhere and we recall the main results. We illustrate the methods by examples in population dynamics and prey–predator models.  相似文献   

10.
OneOfthemostintereStingquestionSintnathematiedbiologyconcernsthes~ofSpecsinecologicalmodels.Forautonomoussystemwhichhavenodiffusion,therearemanyliteraturesabout~istenceanddondnance[1,2,3j.R~ly,manyauthorsfindthatthediffusionpzocessineCOIOgitalsystemPlaysanimPOrtantrole.Infact,diffusionoftenoccursinnatural~icalenvironxnent,thatistosay,whenonepatchisnotvaluabletolivein-spotescan~tOanother.SoLevin[4)firsteStablishedthemedelabbotautonomousLDthe-VolterraSystemwithdiffusionprocess.AfterLevin…  相似文献   

11.
Stability properties of pulse vaccination strategy in SEIR epidemic model   总被引:28,自引:0,他引:28  
The problem of the applicability of the pulse vaccination strategy (PVS) for the stable eradication of some relevant general class of infectious diseases is analyzed in terms of study of local asymptotic stability (LAS) and global asymptotic stability (GAS) of the periodic eradication solution for the SEIR epidemic model in which is included the PVS. Demographic variations due or not to diseased-related fatalities are also considered. Due to the non-triviality of the Floquet's matrix associate to the studied model, the LAS is studied numerically and in this way it is found a simple approximate (but analytical) sufficient criterion which is an extension of the LAS constraint for the stability of the trivial equilibrium in SEIR model without vaccination. The numerical simulations also seem to suggest that the PVS is slightly more efficient than the continuous vaccination strategy. Analytically, the GAS of the eradication solutions is studied and it is demonstrated that the above criteria for the LAS guarantee also the GAS.  相似文献   

12.
The aim of this work is to study the influence of patch selection on the dynamics of a system describing the interactions between two populations, generically called 'population N' and 'population P'. Our model may be applied to prey-predator systems as well as to certain host-parasite or parasitoid systems. A situation in which population P affects the spatial distribution of population N is considered. We deal with a heterogeneous environment composed of two spatial patches: population P lives only in patch 1, while individuals belonging to population N migrate between patch 1 and patch 2, which may be a refuge. Therefore they are divided into two patch sub-populations and can migrate according to different migration laws. We make the assumption that the patch change is fast, whereas the growth and interaction processes are slower. We take advantage of the two time scales to perform aggregation methods in order to obtain a global model describing the time evolution of the total populations, at a slow time scale. At first, a migration law which is independent on population P density is considered. In this case the global model is equivalent to the local one, and under certain conditions, population P always gets extinct. Then, the same model, but in which individuals belonging to population N leave patch 1 proportionally to population P density, is studied. This particular behavioral choice leads to a dynamically richer global system, which favors stability and population coexistence. Finally, we study a third example corresponding to the addition of an aggregative behavior of population N on patch 1. This leads to a more complicated situation in which, according to initial conditions, the global system is described by two different aggregated models. Under certain conditions on parameters a stable limit cycle occurs, leading to periodic variations of the total population densities, as well as of the local densities on the spatial patches.  相似文献   

13.
14.
Our aim is to model the Salmo trutta population dynamics (three age-classes) in an arborescent river network (four levels, 15 patches), by considering both migrations (fast time scale) and demography (slow time scale). We study how the environmental management can influence the global population dynamics. We present a general model coupling both a linear discrete model for constant migrations and a non-linear density-dependent Leslie model for the demography, with (15 × 3) difference equations (15 patches, three age-classes). The variable aggregation method applied to discrete time models allows us to aggregate the previous model into a new one with only three equations. We assume fecundity and survival gradients with respect to the river network levels. The Salmo trutta whole population tends towards an equilibrium state depending on the environmental structure, and we show that dams have a stronger influence than channelling on this equilibrium.  相似文献   

15.
Aggregation methods allow one to replace a large scale dynamical system (micro-system) by a reduced dynamical system (macro-system) governing a small number of global variables. This aggregation of variables can be performed when two time scales exist, a fast time scale and a slow time scale. Perturbation theory allows to obtain an approximated aggregated dynamical system which describes the behaviour of a few number of slow time varying variables which are constants of motion of the fast part of the micro-system. Aggregation methods are applied to the case of the devastation of the great barrier reef by the starfishes. We recall the Antonelli/Kazarinoff model which implies a stable limit cycle for the corals and starfish populations. This prey-predator model describes the interactions between two species of corals and the starfish. Then, we generalize the Antonelli/Kazarinoff model to the case of two spatial patches with a fast part describing the starfish migration on the patches and the human manipulation of the communities by divers and, a slow part describing the growth and the interactions between the populations. We obtain an aggregated model governing the total coral densities on the patches and the total starfish population. This model can exhibit stable limit cycle oscillations and a Hopf bifurcation. The critical value of the bifurcation parameter is expressed in terms of the proportions of coral species and starfish on the two patches. This implies for example that rather than random killing of starfish by the Australian military, it may be better to send teams of divers to outbreaking reefs when they first occur who will then manipulate the community structure to increase protection.  相似文献   

16.
Traditional metapopulation theory classifies a metapopulation as a spatially homogeneous population that persists on neighboring habitat patches. The fate of each population on a habitat patch is a function of a balance between births and deaths via establishment of new populations through migration to neighboring patches. In this study, we expand upon traditional metapopulation models by incorporating spatial heterogeneity into a previously studied two-patch nonlinear ordinary differential equation metapopulation model, in which the growth of a general prey species is logistic and growth of a general predator species displays a Holling type II functional response. The model described in this work assumes that migration by generalist predator and prey populations between habitat patches occurs via a migratory corridor. Thus, persistence of species is a function of local population dynamics and migration between spatially heterogeneous habitat patches. Numerical results generated by our model demonstrate that population densities exhibit periodic plane-wave phenomena, which appear to be functions of differences in migration rates between generalist predator and prey populations. We compare results generated from our model to results generated by similar, but less ecologically realistic work, and to observed population dynamics in natural metapopulations.  相似文献   

17.
We consider a host-parasitoid system with individuals moving on a square grid of patches. We study the effects of increasing movement frequency of hosts and parasitoids on the spatial dynamics of the system. We show that there exists a threshold value of movement frequency above which spatial synchrony occurs and the dynamics of the system can be described by an aggregated model governing the total population densities on the grid. Numerical simulations show that this threshold value is usually small. This allows using the aggregated model to make valid predictions about global host-parasitoid spatial dynamics.  相似文献   

18.
The aim of this work is to present aggregation methods of hierarchically organized systems allowing one to replace the initial micro-system by a macro-system described by a few global variables. We also study the relations between the fast micro-dynamics and the slow macro-dynamics which can produce global properties. Emergence corresponds to a bottom-up coupling that is the result effected by a micro-level at a macro-level. As an example, we present prey-predator models with different time scales in an heterogeneous environment. A fast time scale is associated to the migration process on spatial patches and a slow time scale is associated to growth and interactions between the populations. Preys must go on spatial patches where resources are located and where predators can attack them. The efficiency of the predators to catch preys is patch dependent. Perturbation methods allow us to aggregate the initial system of differential equations for the patch sub-populations into a macro-system of two differential equations governing the total population densities. We study the case of density independent and density dependent migrations. In the latter case, we show that different functional responses can emerge in the macro prey-predator model as a result of the coupling between the slow and fast systems.  相似文献   

19.
In many ecological situations, resources are difficult to find but become more apparent to nearby searchers after one of their numbers discovers and begins to exploit them. If the discoverer cannot monopolize the resources, then others may benefit from joining the discoverer and sharing their discovery. Existing theories for this type of conspecific attraction have often used very simple rules for how the decision to join a discovered resource patch should be influenced by the number of individuals already exploiting that patch. We use a mechanistic, spatially explicit model to demonstrate that individuals should not necessarily simply join patches more often as the number of individuals exploiting the patch increases, because those patches are likely to be exhausted soon or joining them will intensify future local competition. Furthermore, we show that this decision should be sensitive to the nature of the resource patches, with individuals being more responsive to discoveries in general and more tolerant of larger numbers of existing exploiters on a patch when patches are resource-rich and challenging to locate alone. As such, we argue that this greater focus on underlying joining mechanisms suggests that conspecific attraction is a more sophisticated and flexible tactic than currently appreciated.  相似文献   

20.
We examined the fraction of resistant cultivars necessary to prevent a global pathogen outbreak (the resistance threshold) using a spatially explicit epidemiological model (SIR model) in a finite, two-dimensional, lattice-structured host population. Infectious diseases in our model could be transmitted to susceptible nearest-neighbour sites, and the infected site either recovered or died after an exponentially distributed infectious period. Threshold behaviour of this spatially explicit SIR model cannot be reduced to that of bond percolation, as was previously noted in the literature, unless extreme assumptions (synchronized infection events with a fixed lag) are imposed on infection process. The resistance threshold is significantly lower than that of conventional mean-field epidemic models, and is even lower if the spatial configuration of resistant and susceptible crops are negatively correlated. Finite size scaling applied to the resistance threshold for a finite basic reproductive ratio ρ of pathogen reveals that its difference from static percolation threshold (0.41) is inversely proportional to ρ. Our formula for the basic reproductive ratio dependency of the resistance threshold produced an estimate for the critical basic reproductive ratio (4.7) in a universally susceptible population, which is much larger than the corresponding critical value (1) in the mean-field model and nearly three times larger than the critical growth rate of a basic contact process (SIS model). Pair approximation reveals that the resistance threshold for preventing a global epidemic is factor 1/(1−η) greater with spatially correlated planting than with random planting, where η is initial correlation in host genotypes between nearest-neighbour sites. Thus the eradication is harder with a positive spatial correlation (η>0) in mixed susceptible/resistant plantings, and is easier with a negative correlation (η<0). The effect of finite field size (L), which corresponded to the mean distance between sources of infections, is given by the increased resistance threshold (by the amount L−0.75) from its infinite size limit. Implications of these results on effective planting strategies in multi-line control plans are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号