首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermography has been used in many fields to perform non-invasive temperature measurements of natural objects. In this paper, thermography was used to determine the temperature of leaves, stems and branch kerfs of Japanese spindle (Euonymus japonicus Thunb.) and glossy privet (Ligustrum lucidum Ait.) in the city of Jinan in China during winter. The temperatures of the leaves, stems and branch kerfs were monitored as the temperature decreased after the sample was subjected to hand heating or after the branch was cut. Differences in the specific heats and the latent heats of the leaves, branches and stems with different water contents and transpiration capacities were confirmed. The significant temperature difference obtained after hand heating between different leaf sections with varied water contents made it easy to obtain the thermal images, which were clear and exhibited reduced systematic errors. After hand heating, a significantly higher temperature was found at the major vein system of both Japanese spindle and glossy privet. This increased temperature difference made it possible to detect the water and the thermal state of these leaves. Therefore, it was possible to detect scorched area of the leaves, the twig dieback and the sap warming phenomenon in the leaves using thermography. In addition, the leaf bending phenomenon observed in Japanese spindle leaves during the deep freezing process indicates that the leaf scorch symptoms result from water stress and a lack of sap warming.  相似文献   

2.
In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O h−1), transpiration per unit leaf area (E L; mm day−1), stem CO2 efflux (R stem; μmol m−2 s−1) and soil CO2 efflux (R soil; μmol m−2 s−1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or BH, and base of live crown—BLC), and R soil was measured using 15 open-system chambers on each plot. E L before and after treatment was estimated using Q measured at BLC with estimates of A L before and after scorching. We expected Q to decrease in scorched trees compared with controls resulting from reduced A L. We expected R stem at BLC and BH and R soil to decrease following scorching due to reduced leaf area, which would decrease carbon supply to the stem and roots. Scorching reduced A L by 77%. Prior to scorching, Q at BH was similar between scorch and control trees. Following scorching, Q was not different between control and scorch trees; however, E L increased immediately following scorching by 3.5-fold compared to control trees. Changes in E L in scorched trees corresponded well with changes in VPD (D), whereas control trees appeared more decoupled over the 5-day period following treatment. By the end of the study, R stem decreased to 15–25% in scorched trees at both stem positions compared to control trees. Last, we found that scorching resulted in a delayed and temporary increase in R soil rather than a decrease. No change in Q and increased E L following scorching indicates a substantial adjustment in stomatal conductance in scorched trees. Divergence in R stem between scorch and control trees suggests a gradual decline in stem carbohydrates following scorching. The absence of a strong R soil response is likely due to non-limiting supplies of root starch during early summer.  相似文献   

3.
Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.Xylella fastidiosa is a gram-negative bacterium that multiplies within the xylem and causes serious disease problems in many diverse plant species. X. fastidiosa is considered a “new world” pathogen and is mainly found within North, Central, and South America (30). In many native plant species this bacterium exists as an apparently benign endophyte, while in other instances proliferation of X. fastidiosa within the xylem leads to disease typified by symptoms, including leaf scorch, chlorosis, stunting, branch dieback, inedible fruit, and eventually the death of the plant (4, 15). X. fastidiosa is transmitted by xylem-feeding insect vectors such as sharpshooters, leafhoppers, and spittle bugs (35). Diseases caused by X. fastidiosa include Pierce''s disease in grapes (7), citrus variegated chlorosis (CVC) (6), coffee leaf scorch (18), pecan leaf scorch (36), phony peach (41), plum leaf scald (32), and almond leaf scorch (25). X. fastidiosa has also been shown to be the causative agent of diseases found in landscape plants such as oleander leaf scorch (31), mulberry leaf scorch (14), and oak leaf scorch (3). In addition to the examples above proven through the completion of Koch''s postulates, X. fastidiosa is known to be associated with leaf scorch type diseases in several other ornamental landscape species including crape myrtle, olive, day lily, and southern magnolia (12).Chitalpa (Chitalpa tashkentensis Elias and Wisura) is an ornamental landscape plant that was developed for arid landscapes such as California, Arizona, Texas, and New Mexico. Chitalpa, originally bred in Russia and introduced into the United States in 1977, is an intergenic hybrid between desert willow (Chilopsis linearis Cav.) and Catalpa bignonioides Walt. (28). In the past, chitalpa trees across the Southwest were observed to display leaf scorch symptoms of unknown origin. X. fastidiosa was detected in many chitalpa trees that displayed leaf scorch symptoms in southern New Mexico (34). The first known occurrence of Pierce''s disease in New Mexico was reported in 2007, and the strains of X. fastidiosa found in infected New Mexico grapes were very similar to those present in chitalpa trees from the same area (33). The common use of chitalpa as a landscape plant in the Southwest coupled with the recent discovery that it can harbor X. fastidiosa strains similar to those associated with Pierce''s disease in New Mexico prompted a survey of chitalpa trees across the Southwest. The results of this survey show that chitalpa trees from New Mexico and Arizona are frequently infected with X. fastidiosa. Chitalpa plants imported into New Mexico nurseries from California were also found to contain similar strains of X. fastidiosa. A multilocus phylogenetic analysis was performed to further characterize these strains of X. fastidiosa. This analysis revealed that the X. fastidiosa isolates infecting chitalpa plants in New Mexico, Arizona, and imported into nurseries from California are highly related to each other and are distinct from the previously described subspecies fastidiosa (38).  相似文献   

4.
Poss  J.A.  Grattan  S.R.  Grieve  C.M.  Shannon  M.C. 《Plant and Soil》1999,206(2):237-245
Symptoms of boron toxicity (i.e., necrosis of leaf tips and margins) have been observed on eucalyptus trees in the San Joaquin Valley of California where the trees are being tested for their effectiveness at reducing the volume of agricultural drainage effluents. In a controlled, outdoor sand-tank study, Eucalyptus camaldulensis Dehn., Clone 4544 trees were grown and irrigated with combinations of salinity and B to determine their influence on tree growth and water use. Irrigation water quality treatments were prepared to simulate the Na-sulfate salinity, high B nature of these drainage effluents. Electrical conductivities (ECiw) of the waters ranged from 2 to 28 dS m-1 and B concentrations ranging from 1 to 30 mg L-1. As an integral component of this study , we developed a method to quantify and correlate foliar damage with leaf B concentrations. By scanning both injured and uninjured leaves into computer files and processing with image analysis, we were able to simultaneously correlate salinity stress with its overall effect on leaf area as well as to quantify the relative fraction of leaf area affected by specific-ion (i.e., B) injury. Leaf area was unaffected by B stress but was reduced by salinity only in the younger leaves. Boron injury was correlated with increasing irrigation water B only in older leaves. The relative injured area (RIA) of the older leaves was related to the B concentrations of leaves from trees grown at various salinities . A regression equation was developed from injury data obtained from trees grown under boron and salinity stress for 223 days (r2=0.90). From this relationship, we were able to estimate leaf boron concentrations from injury symptoms in leaves selected at random from main trunk branches of trees grown for 333 days under the same stress conditions. The results suggest that this method may have potential as an effective tool for monitoring the response to toxic levels of boron in eucalyptus, once B toxicity has been established by analytical means. The RIA appears to be mitigated by increased salinity of the irrigation water and is consistent with the general reduction in leaf B by salinity. The interactive effects of boron and salinity on foliar injury depends on the physiological age of the leaf.  相似文献   

5.
热带雨林木质藤本植物叶片性状及其关联   总被引:2,自引:0,他引:2  
热带雨林中木质藤本植物较为丰富。随着全球气候变化加剧,木质藤本植物的丰富度具有不断增加的趋势,有可能对热带森林的结构、功能和动态产生重要影响。然而,目前对木质藤本响应环境变化的机制所知甚少。本研究以13个科20种热带雨林常见木质藤本植物为材料,测定了冠层叶片的17个形态特征及结构性状,并分析了性状间的相互关系。结果表明,叶片相对含水量的种间变异最小(变异系数为5%),而上表皮厚度的种间变异最大(变异系数为80%),其它性状的种间变异系数为24%~61%。木质藤本植物的叶脉密度、叶片密度均与气孔密度呈显著正相关,叶片干物质含量与比叶面积呈显著负相关。与相同生境的树木相比,木质藤本的叶面积更小、气孔密度和叶片密度更低、比叶面积更高,但两种植物类群的叶片横切面组织结构厚度无显著差异。研究结果对理解木质藤本植物的生态适应性具有重要意义。  相似文献   

6.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

7.
Karst hills, that is, jagged topography created by dissolution of limestone and other soluble rocks, are distributed extensively in tropical forest regions, including southern parts of China. They are characterized by a sharp mosaic of water and nutrient availability, from exposed hilltops with poor soil development to valleys with occasional flooding, to which trees show species‐specific distributions. Here we report the relationship of leaf functional traits to habitat preference of tropical karst trees. We described leaf traits of 19 tropical tree species in a seasonal karst rainforest in Guangxi Province, China, 12 species in situ and 13 ex situ in a non‐karst arboretum, which served as a common garden, with six species sampled in both. We examined how the measured leaf traits differed in relation to species’ habitat affinity and evaluated trait consistency between natural habitats vs. the arboretum. Leaf mass per area (LMA) and optical traits (light absorption and reflectance characteristics between 400 and 1,050 nm) showed significant associations with each other and habitats, with hilltop species showing high values of LMA and low values of photochemical reflectance index (PRI). For the six species sampled in both the karst forest and the arboretum, LMA, leaf dry matter content, stomatal density, and vein length per area showed inconsistent within‐species variations, whereas some traits (stomatal pore index and lamina thickness) were similar between the two sites. In conclusion, trees specialized in exposed karst hilltops with little soils are characterized by thick leaves with high tissue density indicative of conservative resources use, and this trait syndrome could potentially be sensed remotely with PRI.  相似文献   

8.
Cariniana legalis is an emergent tree that reaches the upper canopy in Brazilian Semideciduous Forest. Spatial contrasts in microclimatic conditions between the upper canopy and understorey in a forest may affect morpho-physiological leaf traits. In order to test the hypothesis that the upper canopy is more stressful to leaves than a gap environment we compared emergent trees of Clegalis, 28–29 m in height to gap saplings, 6–9 m in height, for the following parameters: leaf area, leaf mass area (LMA the dry weight:leaf area ratio), leaf thickness, leaf anatomical parameters, stomata conductance, and chlorophyll a fluorescence. Leaves from emergent trees had smaller leaf areas but greater LMA compared to saplings. Leaf thickness, palisade layer thickness, and stomatal density were higher for emergent trees than for saplings. The opposite pattern was observed for spongy layer thickness and spongy/palisade ratio. Stomatal conductance was also higher for emergent tree leaves than for sapling leaves, but the magnitude of depression on stomatal conductance near midday was more pronounced in emergent trees. The potential quantum yield of photosystem II, as determined by the F v/F m ratio was lower for leaves from saplings. The lower values of stomatal conductance, indicating restriction in CO2 diffusion into the mesophyll can be related to higher photoinhibition observed in the saplings. Leaves from emergent trees and saplings exhibited similar values for apparent electron transport rates and non-photochemical quenching. Our results suggest that changes in leaf traits could be associated to dry conditions at the upper canopy as well as to the ontogenetic transition between sapling/emergent tree life stages.  相似文献   

9.
Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.  相似文献   

10.
Because of the difficulty and time involved in making exhaustive measurements of the geometric parameters of large tree crowns, simplifying hypotheses are often used in 3D virtual plant modelling, but the effects on the radiation balance of each approximation are rarely assessed. Three hybrid walnut trees aged 7–9 years were digitized to analyse the effect of the crown geometric variables on light capture. The six studied variables were: (1) leaf area, (2) number of leaves per annual shoot, (3) position of leaves, (4) orientation of leaves, (5) leaflet inclination, and (6) lamina shape. For each variable, a sensitivity analysis compared a reference, based on observed values, with scenarios consisting of simplifying hypotheses. The total incident light intercepted during a bright day and the distributions of leaf irradiance were calculated using the Archimed radiative transfer model. Since some of the crown parameters were generated stochastically, the radiation simulations were repeated until results stabilised. Simplified models can be used to calculate with satisfactory results individual leaf area and number of leaves per shoot. Conversely, differentiating statistical distributions of individual leaf area between short and long shoots is more difficult and may generate errors up to 30%. Leaf clumping is a determining factor and requires correct grouping of leaves around the annual shoots bearing them. The effect of position of leaves along the shoot is less than 2%. Simple statistical distributions are adequate for representing leaf angle. Finally, the effect of specific leaf geometry is very important, but it can be approached using a limited number of representative leaf shapes.  相似文献   

11.
12.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   

13.
Trees of Sassafras albidum (Nuttall) Nees. display leaves that fall into discrete categories of form. Unlobed leaves, with undissected margins, predominate at proximal and distal nodes of shoots, while lobed leaves are most common at intermediate nodes. In this study we investigated the hypothesis that shoots of sassafras respond to environmental changes over the growing season by generating predictable nodal patterns for leaf morphology and physiology. We recorded leaf shape category and measured leaf surface area, node number, chlorophyll content, nitrogen content, and photosynthesis in four trees. Over 1,000 measurements of photosynthesis were made in situ, using the LI-Cor LI 6200 portable photosynthesis system. The two trees growing under heavy shade had few lobed leaves (2.0% and 18.8%) and often had negative carbon balance, with positive net photosynthesis occurring during sun flecks. The two trees growing in more open conditions had many more lobed leaves (56.3% and 61.0%) and higher, less variable net photosynthetic rates. As indicated by chlorophyll and nitrogen contents, the highest leaf photosynthetic rates occurred at intermediate nodes (nodes six to nine), and this was shifted distally along the shoot during the growing season. Leaves at intermediate nodes also had the largest surface areas and the greatest frequency of lobing. In comparative experiments with models, lobing was shown to enhance free-convectional heat loss relative to unlobed leaves of the same surface area. Due to their large surface area, these leaves also have the highest rates of whole leaf photosynthesis. Under conditions of equivalent photosynthetically active radiation, lobed leaves had higher rates of net photosynthesis than did unlobed leaves. We conclude that shoots of sassafras produce groups of leaves with predictably different morphological and physiological specializations.  相似文献   

14.
植物叶片性状随叶龄的变化是植物生活史策略的体现, 反映了植物叶片的物质投资和分配方式。该研究通过在个体和物种2个水平, 比较浙江天童1 hm 2样地内常绿阔叶树种的平均叶面积(MLA)、比叶面积(SLA)和叶片干物质含量(LDMC)在当年生和往年生叶片间的差异和关联, 探究叶片物质分配策略在异龄叶间的变化, 并分析叶龄对植物叶片性状, 特别是叶片面积建成消耗的影响。结果显示: 1)在个体和物种水平上, MLA变异系数最大(个体: 79.5%; 物种: 66.5%), SLA次之(个体: 28.1%; 物种: 24.7%), LDMC较低(个体: 17.0%, 物种: 14.1%); 当年生叶片MLA、LDMCSLA的变异系数均高于往年生叶片; 2)往年生叶MLA显著大于当年生叶(t = -38.53, p < 0.001), 往年生叶SLA显著小于当年生叶(t = 45.30, p < 0.001), 往年生叶LDMC显著大于当年生叶(t = -9.71, p < 0.001); 3)在个体水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的86%、48%和41%; 在物种水平, 当年生叶片MLA、SLALDMC值分别解释了往年生叶片MLA、SLALDMC变异的97%、83%和85%; 4) SLA在异龄叶间的变化表明, 与往年生叶片相比, 投资相同干物质, 当年生叶片可形成较大的叶面积, 其叶片面积建成消耗较小。研究认为, 植物叶性状在异龄叶间具有较大的变异性和关联性, 叶面积形成过程中生物量建成与消耗的协调可能影响植物叶片的发育。  相似文献   

15.
Summary Relationships between leaf nitrogen content and within canopy light exposure were studied in mature nectarine peach trees (Prunus persica cv. Fantasia) that had received 0, 112, 196, 280 or 364 kg of fertilizer nitrogen per hectare per year for the previous 3 years. The relationships between light saturated leaf CO2 assimilation rates and leaf nitrogen concentration were also determined on trees in the highest and lowest nitrogen fertilization treatments. The slope of the linear relationship between leaf N content per unit leaf area and light exposure was similar for all nitrogen treatments but the y-intercept of the relationship increased with increasing N status. The slope of the relationship between leaf N content per unit leaf area and light saturated CO2 assimilation rates was greater for the high N trees than the low N trees, but maximum measured leaf CO2 assimilation rates were similar for both the high and low N treatments. A diagrammatic model of the partitioning of leaf photosynthetic capacity with respect to leaf light exposure for high and low nitrogen trees suggests that the major influence of increased N availability is an increase in the photosynthetic capacity of partially shaded leaves but not of the maximum capacity of highly exposed leaves.  相似文献   

16.
Whole-tree sap flow is substantially diminished by leaf herbivory   总被引:1,自引:0,他引:1  
Ecohydrological models consider the relationship between tree size and structure (especially leaf area index) and water use but generally treat herbivory as a source of unwanted noise in the data. Little is known of how insect damage to leaves influences whole-plant water use in trees. Water use is driven by environmental demand and the total leaf area through which transpiration can occur, but the effects of insects are expected to be complex. Different kinds of insects could have different effects; for example, chewing insects reduce leaf area, whereas sucking and tissue mining insects reduce leaf function without reducing area. Further, plants respond to herbivory in a range of ways, such as by altering leaf production or abscising leaves. We examined the effect of insects on Eucalyptus blakelyi in a woodland near Canberra, Australia, using sap flow velocity as a measure of whole-plant water use. We applied insecticide to 16 trees matched to an untreated control group. After 6 months, we examined the effects on sap flow velocity and crown condition. There was a general increase in sap flow velocity as trees produced leaves over the growing season, but the increase in sap flow for trees without insecticide protection was half that of the protected trees (increase: 4.4 vs. 9.0 cm/h, respectively). This dramatic effect on sap flow was consistent with effects on crown condition. Unprotected trees had 20% less leaf mass per unit stem in the crown. In addition, unprotected trees had a 20% greater loss of leaf functional area from necrosis. It should be noted that these effects were detected in a year in which there was not an outbreak of the psyllids (Homoptera) that commonly cause severe leaf damage to this tree species. It is predicted that the effect in a psyllid outbreak year would be even more substantial. This result underscores the significant impact that insect herbivores can have on an ecological process of significance to the ecosystem, namely, the movement of water from the soil to the atmosphere.  相似文献   

17.
Structural and hydraulic correlates of heterophylly in Ginkgo biloba   总被引:1,自引:0,他引:1  
This study investigates the functional significance of heterophylly in Ginkgo biloba, where leaves borne on short shoots are ontogenetically distinct from those on long shoots. Short shoots are compact, with minimal internodal elongation; their leaves are supplied with water through mature branches. Long shoots extend the canopy and have significant internodal elongation; their expanding leaves receive water from a shoot that is itself maturing. Morphology, stomatal traits, hydraulic architecture, Huber values, water transport efficiency, in situ gas exchange and laboratory-based steady-state hydraulic conductance were examined for each leaf type. Both structure and physiology differed markedly between the two leaf types. Short-shoot leaves were thinner and had higher vein density, lower stomatal pore index, smaller bundle sheath extensions and lower hydraulic conductance than long-shoot leaves. Long shoots had lower xylem area:leaf area ratios than short shoots during leaf expansion, but this ratio was reversed at shoot maturity. Long-shoot leaves had higher rates of photosynthesis, stomatal conductance and transpiration than short-shoot leaves. We propose that structural differences between the two G. biloba leaf types reflect greater hydraulic limitation of long-shoot leaves during expansion. In turn, differences in physiological performance of short- and long-shoot leaves correspond to their distinct ontogeny and architecture.  相似文献   

18.
Abstract. Seasonal changes in photosynthesis, leaf nitrogen (N) contents and leaf mass per area (LMA) were observed over three growing seasons in open-grown sun-lit leaves of red maple ( Acer rubrum ), sugar maple ( A. sacchamm ) and northern pin oak ( Quereus ellipsoidalis ) trees in southern Wisconsin. Net photosynthesis and leaf N were highly linearly correlated on both mass and area bases within all species from late spring until leaf senescence in fall. Very early in the growing season leaves had high N concentrations, but low photosynthetic rates per unit leaf N, suggesting that leaves were not fully functionally developed at that time. Leaf N per unit area and LMA had nonparallel seasonal patterns, resulting in differing relationships between leaf N/area and LMA in the "early versus late growing season. As a result of differences in seasonal patterns between leaf N/area and LMA, net photosynthesis/area was higher for a given LMA in the spring than fall, and the overall relationships between these two parameters were poor.  相似文献   

19.
The kinetics of leaf vein recovery from cavitation-induced embolism was studied in plants of sunflower cv. Margot, together with the impact of vein embolism on the overall leaf hydraulic conductance (Kleaf). During the air-dehydration of leaves to leaf water potentials (Psi L) of -1.25 MPa, Kleaf was found to decrease by about 46% with respect to values recorded in well-hydrated leaves. When leaves, previously dehydrated to Psi L= -1.1 MPa (corresponding to the turgor loss point), were put in contact with water, Kleaf recovered completely in 10 min and so did leaf water potential. Functional vein density was estimated in both dehydrating and rehydrating leaves in terms of total length of red-stained veins infiltrated with a Phloxine B solution per unit leaf surface area. Veins were found to embolize (unstained) with kinetics showing a linear relationship with Kleaf so that about a 70% loss of functional veins corresponded with a Kleaf loss of 46%. Cavitated veins recovered from embolism within 10 min from the beginning of leaf rehydration. These data indicate that: (a) leaves of sunflower underwent substantial vein embolism during dehydration; (b) vein embolism and leaf hydraulic efficiency apparently recovered from dehydration completely and rapidly upon rehydration; (c) vein refilling occurred while conduits were still at more negative xylem pressures than those required for spontaneous bubble dissolution on the basis of Henry's law. The possible consistent contribution of vital mechanisms for vein refilling is discussed.  相似文献   

20.
There are only limited possibilities to study the competition between trees and lianas in the top canopy of tropical rain forests. Furthermore, the important question how the leaf traits are related to twig support is rarely studied, especially regarding growing space partitioning between the self-supporting and the climbing growth form. Our study used the hot-air balloon within the “Operation Canopee” in the Masoala National Park, Madagascar, to test the differences in spatial allocation patterns of leaves and twigs in lianas and tree parts used for support. The sampling design emphasised to obtain a common assembly of twigs and leaves from both, trees and lianas. The results from the top canopy were compared to the data from the understorey regarding biomass and nutrients in leaves and distal twigs. In the understorey the reduction in structural investment was much stronger in lianas than in trees. The results showed that lianas reduced carbon investment per volume, but increased leaf nitrogen concentration and leaf area ratio (LAR), the latter driven by a reduction in leaf mass per area (LMA). In the top canopy, lianas contributed about one third of the leaf area density of 3 m2 m−3. For distal twigs, no relationship was found between twig biomass per volume and leaf area density for trees, but lianas balanced both structural parameters closely. The climbers benefit from the external support provided by the trees and optimise the area of assimilation tissue at low per volume investment for mechanical stability. Several traits such as low LMA and high leaf nitrogen concentrations together with higher LAR and optimised spatial investment advantage the climbing growth form and enable a fast acquisition of growing space. The results emphasize the necessity to consider spatial and structural features of growing space acquisition when dealing with plant competition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号