首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that the greenness index derived from digital camera imagery has high spatial and temporal resolution. These findings indicate that it can not only provide a reasonable characterization of canopy seasonal variation but also make it possible to optimize ecological models. To examine this possibility, we evaluated the application of digital camera imagery for monitoring winter wheat phenology and modeling gross primary production (GPP).By combining the data for the green cover fraction and for GPP, we first compared 2 different indices (the ratio greenness index (green-to-red ratio, G/R) and the relative greenness index (green to sum value, G%)) extracted from digital images obtained repeatedly over time and confirmed that G/R was best suited for tracking canopy status. Second, the key phenological stages were estimated using a time series of G/R values. The mean difference between the observed phenological dates and the dates determined from field data was 3.3 days in 2011 and 4 days in 2012, suggesting that digital camera imagery can provide high-quality ground phenological data.Furthermore, we attempted to use the data (greenness index and meteorological data in 2011) to optimize a light use efficiency (LUE) model and to use the optimal parameters to simulate the daily GPP in 2012. A high correlation (R2 = 0.90) was found between the values of LUE-based GPP and eddy covariance (EC) tower-based GPP, showing that the greenness index and meteorological data can be used to predict the daily GPP. This finding provides a new method for interpolating GPP data and an approach to the estimation of the temporal and spatial distributions of photosynthetic productivity.In this study, we expanded the potential use of the greenness index derived from digital camera imagery by combining it with the LUE model in an analysis of well-managed cropland. The successful application of digital camera imagery will improve our knowledge of ecosystem processes at the temporal and spatial levels.  相似文献   

2.
Leaf water status information is highly needed for monitoring plant physiological processes and assessing drought stress. Retrieval of leaf water status based on hyperspectral indices has been shown to be easy and rapid. However, a universal index that is applicable to various plants remains a considerable challenge, primarily due to the limited range of field-measured datasets. In this study, a leaf dehydration experiment was designed to obtain a relatively comprehensive dataset with ranges that are difficult to obtain in field measurements. The relative water content (RWC) and equivalent water thickness (EWT) were chosen as the surrogates of leaf water status. Moreover, five common types of hyperspectral indices including: single reflectance (R), wavelength difference (D), simple ratio (SR), normalized ratio (ND) and double difference (DDn) were applied to determine the best indices. The results indicate that values of original reflectance, reflectance difference and reflectance sensitivity increased significantly, particularly within the 350–700 nm and 1300–2500 nm domains, with a decrease in leaf water. The identified best indices for RWC and EWT, when all the species were considered together, were the first derivative reflectance based ND type index of dND (1415, 1530) and SR type index of dSR (1530, 1895), with R2 values of 0.95 (p < 0.001) and 0.97 (p < 0.001), respectively, better than previously published indices. Even so, different best indices for different species were identified, most probably due to the differences in leaf anatomy and physiological processes during leaf dehydration. Although more plant species and field-measured datasets are still needed in future studies, the recommend indices based on derivative spectra provide a means to monitor drought-induced plant mortality in temperate climate regions.  相似文献   

3.
We investigated the usefulness of a ground-based digital photography to evaluate seasonal changes in the aboveground green biomass and foliage phenology in a short-grass grassland in Japan. For ground-truthing purposes, the ecological variables of aboveground green biomass and spectral reflectance of aboveground plant parts were also measured monthly. Seasonal change in a camera-based index (rG: ratio of green channel) reflected the characteristic events of the foliage phenology such as the leaf-flush and leaf senescence. In addition, the seasonal pattern of the rG was similar to that of the aboveground green biomass throughout the year. Moreover, there was a positive linear relationship between rG and aboveground green biomass (R2 = 0.81, p < 0.05), as was the case with spectra-based vegetation indices. On the basis of these results, we conclude that continuous observation using digital cameras is a useful tool that is less labor intensive than conventional methods for estimating aboveground green biomass and monitoring foliage phenology in short-grass grasslands in Japan.  相似文献   

4.
Retrieving leaf chlorophyll content at a range of spatio-temporal scales is central to monitoring vegetation productivity, identifying physiological stress and managing biological resources. However, estimating leaf chlorophyll over broad spatial extents using ground-based traditional methods is time and resource heavy. Satellite-derived spectral vegetation indices (VIs) are commonly used to estimate leaf chlorophyll content, however they are often developed and tested on broadleaf species. Relatively little research has assessed VIs for different leaf structures, particularly needle leaves which represent a large component of boreal forest and significant global ecosystems. This study tested the performance of 47 published VIs for estimating foliar chlorophyll content from different leaf and canopy structures (broadleaf and needle). Coniferous and deciduous sites were selected in Ontario, Canada, representing different dominant vegetation species (Picea mariana and Acer saccharum) and a variety of canopy structures. Leaf reflectance data was collected using an ASD Fieldspec Pro spectroradiometer (400–2500 nm) for over 300 leaf samples. Canopy reflectance data was acquired from the medium resolution imaging spectrometer (MERIS). At the canopy level, with both leaf types combined, the DD-index showed the strongest relationship with leaf chlorophyll (R2 = 0.78; RMSE = 3.56 μg/cm2), despite differences in leaf structure. For needleleaf trees alone the relationship with the top VI was weaker (D[red], R2 = 0.71; RMSE = 2.32 μg/cm2). A sensitivity study using simulated VIs from physically-modelled leaf (PROSPECT) and canopy (4-Scale) reflectance was performed in order to further investigate these results and assess the impacts of different background types and leaf area index on the VIs’ performance. At the leaf level, the MNDVI8 index showed a strong linearity to changing chlorophyll and negligible difference to leaf structure/type. At canopy level, the best performing VIs were relatively consistent where LAI  4, but responded strongly to differences in background at low canopy coverage (LAI = 2). This research provides comprehensive assessments for the use of spectral indices in retrieval of spatially-continuous leaf chlorophyll content at the leaf (MTCI: R2 = 0.72; p < 0.001) and canopy (DD: R2 = 0.78; p < 0.001) level for resource management over different spatial and temporal scales.  相似文献   

5.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

6.
7.
Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to functional characterization of forest ecosystems including biomass and primary productivity studies. Accurate LAI estimates of tropical deciduous forest are required in studies of regional and global change modeling. Tropical deciduous forest due to higher species richness, multiple species association, varied phenophases, irregular stem densities and basal cover, multistoried canopy architecture and different micro-climatic conditions offers dynamism to the understanding of the LAI dynamics of different PFTs in an ecosystem. This investigation reports a new indirect method for measurement of leaf area index (LAI) in a topical moist deciduous forest in Himalayan foothills using LAI-2000 Plant Canopy Analyzer. We measured the LAI in two seasons (summer; leaf senescence stage and post-monsoon; full green stage) in three (dry miscellaneous, sal mixed and teak plantations) plant functional types (PFT) in Katerniaghat Wildlife Sanctuary, India. Ground LAI values ranged between 2.41 and 6.89, 1.17 and 7.71, and 1.92 and 5.19 during post-monsoon season and 1.36–4.49, 0.67–3.1 and 0.37–1.83 during summer season in dry miscellaneous, sal mixed and teak plantation, respectively. We observed strong correlation between LAI and community structural parameters (tree density, basal cover and species richness), with maximum with annual litter fall (R2 > 0.8) and aboveground biomass (AGB) (R2 > 0.75). We provided equations relating LAI with AGB, which can be utilized in future studies for this region and can be reasonably extrapolated to other regions with suitable statistical extrapolations. However, the relations between LAI and other parameters can be further improved with incorporation of data from optimized and seasonal sampling. Our indirect method of LAI estimation using litter fall as a proxy, offers repetitive potential for LAI estimate in other PFTs with relatively time and cost-effective way, thereby generating quicker and reliable data for model run for regional and global change studies.  相似文献   

8.
The growing popularity of digital-repeat photography in field research is seeing traditional field efforts being assisted and even replaced by low-cost cameras. The efficiency of using cameras is obvious, but there is an assumption that they capture the same information as observations made by humans. This paper aims to determine the level of agreement between these two methods of interpreting understory vegetation phenology. We compared daily phenological observations made by low-cost cameras with those made by personnel during field visits every 10 days. Phenophases were defined as the non-spectral, physical developmental stages of Canadian buffaloberry (Shepherdia canadensis) and alpine sweetvetch (Hedysarum alpinum). The relationship between observation methods was quantified using a weighted kappa statistic at three spatial scales ranging from individual plants to areas up to 6 ha. Agreement between the camera observations and those made by field personnel was nearly perfect (Kappa > 0.9) for both the vegetative and reproductive phenology of both study species at all spatial scales. The level of agreement was found to be more variable early in the season when plant growth is more rapid. Overall there was a slight bias in the image interpretations to underestimate the rate of development. Time-lapse photography was found to be an analogous replacement for field visits; however, some plant species are more suitable for observation by camera than others. Spatially, it was determined that observations of a single plant are all that is required to capture the phenology of the surrounding region in excess of 6 ha. This analysis was carried out over a single growing season in the in the Rocky Mountains of western Alberta, Canada.  相似文献   

9.
Several ecological indices have been developed to evaluate the wetland quality in the Laurentian Great Lakes. One index, the water quality index (WQI) can be widely applied to wetlands and produces accurate measurements of wetland condition. The WQI measures the degree of water quality degradation as a result of nutrient enrichment and road runoff. The wetland fish index (WFI), wetland zooplankton index (WZI), and the wetland macrophyte index (WMI), are all derived from the statistical relationships of biotic communities along a gradient of deteriorating water quality. Compared to the WQI, these indices are less labor-intensive, cost less, and have the potential to produce immediate results. We tested the relative sensitivity of each biotic index for 32 Great Lakes wetlands relative to the WQI and to each other. The WMI (r2 = 0.84) and WFI (r2 = 0.75) had significant positive relationships (P < 0.0001) with the WQI in a linear and polynomial fashion. Slopes of the WMI and WFI were similar when comparing the polynomial regressions (ANCOVA; P = 0.117) but intercepts were significantly different (P = 0.004). The WZI had a positive relationship with the WQI in degraded wetlands and a negative relationship in minimally impacted wetlands. The strengths and weaknesses of each index can be explained by the interactions among fish, zooplankton, aquatic plants and water chemistry. The distribution of different species indicative of low and high quality in each index provides insight into the relative wetland community composition in different parts of the Great Lakes and helps to explain the differences in index scores when different organisms are used. Our findings suggest that the WMI and WFI produce comparable results but the WZI should not be used in the minimally impacted wetlands without further study.  相似文献   

10.
Non-structural carbohydrates (NSCs), e.g., glucose and starch, play important roles in metabolic processes of plants and represent important functional traits in plant's adaptation to external environment. To explore the variations in leaf NSCs among species and communities at a large scale and their influencing factors, we investigated the contents of leaf NSCs among 890 plant species in nine typical forests along the north–south transect of eastern China. The results showed that the contents of leaf soluble sugars, starch, and NSCs (sugars + starch) were highly variable among different plant species on the site scale, and their mean values for the 890 plant species were 45.7 mg g−1, 47.5 mg g−1, and 93.2 mg g−1, respectively. All three metrics varied markedly across plant functional groups in the order of trees < shrubs < herbs. Weak latitudinal patterns of leaf soluble sugars, starch, and NSCs were observed from tropical to cold-temperate forests at the levels of species and plant functional groups. The contents of leaf soluble sugars, starch, and NSCs decreased with increasing temperature and precipitation which supports the growth limitation hypothesis at a large scale. In trees, leaf soluble sugars, starch, and NSCs increased with increasing photosynthetic active radiation (PAR); and were positively correlated with specific leaf area (SLA). The spatial patterns of leaf NSCs in forests along the north–south transect of eastern China and their relationships with temperature, precipitation, PAR, and SLA illustrate an important adaptation of plant communities to environmental changes at the continental scale.  相似文献   

11.
Transgenes in commercially available genetically modified plants are generally controlled by strong constitutive promoters to ensure a high level of expression at all stages of cultivation. Constitutive promoters however are influenced by a wide range of factors, and expression profiles of the transgenes in multiple genetic backgrounds have not yet been extensively studied. In this study a powerful expression profiling methodology for transgenic maize (Zea mays L.) is demonstrated on a large scale, analysing thousands of data points from three genotypes of herbicide and insect pest tolerant transgenic maize. Martonvásár inbred lines were crossed with LH244 maize line containing the MON 88017 events, and leaf tissue from the sixth backcross generation was sampled at four relevant phenological phases. Relative expression levels were determined using 18S rRNA as a reference and detailed statistical analysis performed. Expression levels of both transgenes are varied throughout plant development, and the interaction between the genetic background and phenophase are significant (p < 0.05). Expression is present at a significant level throughout all the phenological stages. We found that the genetic background has a significant (p < 0.01) effect on transgene expression levels in the case of the CP4epsps transgene, but not in the case of cry3Bb1, implying that the sensitivity of different constitutive promoter constructs to the effects of the genetic background is different.  相似文献   

12.
Chromolaena barranquillensis (Asteraceae) is an endemic plant of northern Colombia that has garnered economic and medicinal interest, because species from the genus Chromolaena have shown diverse biological activities. This study describes, for the first time, the karyotype, germination and mitotic indices of C. barranquillensis (Hieron.) R.M. King & H. Rob. The germination index was between 34% and 56% with an average germination rate of 1.2 ± 0.4 seeds/day. The mitotic index analysis allowed to determine the cell cycle time (4 h, 10 min) and the mitotic hours (3:00–8:00 h and 17:00 h). The mitosis time was 49 min, equivalent to ~ 20% of the cell cycle. Karyotype analysis showed that C. barranquillensis is a hexaploid species with a chromosomal formula 2n = 6x = 60 = 48 m + 12 sm, and the average chromosomal lengths were 1.7 ± 0.1 μm to 0.9 ± 0.3 μm. The Stebbins asymmetry index was 2B, and the total form percentage was ~ 41%. These results uncover differences between C. barranquillensis and Chromolaena odorata, one of the most abundant species found in the world and the most closely related species to C. barranquillensis.  相似文献   

13.
Lake Chaohu is one of the most eutrophic lakes in China. Research on this lake's seasonal and spatial variations in phytoplankton diversity is needed to understand the distribution of eutrophication, as well as to find appropriate comprehensive biodiversity indices to assess the eutrophication status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake samples. The Peilou index of the lake samples was higher than that of the river samples in summer and autumn (November 2011) but lower than that of the river samples in winter. In spring (May 2012), the Peilou index of the western samples was lower than that of the eastern samples. The spatial distribution of the Shannon–Wiener index was more similar to that of the Peilou index in autumn and winter, while in spring and summer, the spatial distribution was affected by both species richness and evenness. High eutrophication levels occurred in the western lake in spring and summer, whereas high levels occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon–Wiener (r = 0.654) index. The partial correlation analysis results implied that these phytoplankton biodiversity indices could serve as synthetic ecological indicators to assess the eutrophication condition of Lake Chaohu.  相似文献   

14.
Zea mays L., known also as corn and maize, is the most important crop according to the amount of tonnes produced each year. Fungi cause significant destruction of maize in the field as well as during storage rendering the grain unsuitable for human consumption by decreasing its nutritional value and by producing mycotoxins that are detrimental to both human and animal health. Fusarium species are widely distributed and are amongst the most frequently isolated fungal species by plant pathologists. Due to the fact that the Fusarium species involved in maize ear rot vary in fungicide sensitivity, pathogenicity as well as in their capability to produce mycotoxins, accurate quantification and identification is of paramount significance. Currently no method has been developed to test for Fusarium species in maize seed that has been validated and published by the International Seed Testing Association (ISTA). Malachite green agar 2.5 ppm (MGA 2.5) is a potent selective medium for isolation and enumeration of Fusarium spp. In this study, eight different media compositions, potato dextrose agar (PDA), PDA + malachite green oxalate, corn meal agar, 1/2 PDA + malachite green oxalate, 1% malt agar, carnation leaf agar supplemented with potassium chloride (KCLA), malachite green agar (MGA 2.5) and MGA 2.5 + sterile carnation leaf pieces were compared using four Fusarium species (F. graminearum, F. proliferatum, F. subglutinans and F. verticillioides) and five commonly encountered saprophytic fungi (Aspergillus niger, Penicillium crustosum, P. digitatum, Trichoderma harzianum and Rhizopus stolonifer). The maize kernels were surface disinfected using three concentrations of sodium hypochlorite (0.5%, 1% and 1.5% NaOCl) and for different time intervals (1 min, 3 min, 5 min and 10 min). The effect of black-blue light (365 nm) on sporulation of the fungi was also investigated. Surface disinfection of maize seeds with 1% NaOCl for 5 min provided consistent results. PDA, 1/2 PDA, 1% malt agar and KCLA allowed profuse growth of the Fusarium species as well as saprophytes. Media that contained malachite green oxalate was most inhibitory to the radial colony growth of the saprophytes and the Fusarium species. The Fusarium species growing on these media formed underdeveloped morphological structures, thereby obscuring accurate identification. MGA 2.5 showed better hindering of the saprophytes in some instances. MGA 2.5 amended with sterile carnation leaf pieces was the most satisfactory medium in hindering the growth of the saprophytes while allowing adequate sporulation by the four Fusarium species to permit accurate identification. The media also resulted in higher F. verticillioides and lower saprophytic fungal isolation frequency when compared to the other media tested.  相似文献   

15.
《Aquatic Botany》2005,81(3):213-224
The annual leaf growth and shoot dynamics of Thalassia testudinum were examined in a meadow located near Havana City, Cuba, using direct censuses between January 1995 and January 1996. The net rate of shoot population change, specific shoot recruitment and mortality rates were calculated as the difference between the densities of shoots (tagged or untagged) in consecutive sampling events. The leaf biomass, the daily production, the turnover rate and the rate of leaf biomass loss were also estimated. The estimated mean dry leaf biomass (124.9 ± 9.5 g m−2), daily dry leaf production (3.3 ± 0.2 g m−2 day−1) and turnover rate (2.7 ± 0.1% day−1) were comparable to values previously reported for this species in Cuba and elsewhere. The production of leaves and shoots were higher in spring, declined towards mid summer, and showed the minimum values in January. Shoot recruitment prevailed over shoot mortality from January to March and from July to August, whereas most of the annual shoot mortality occurred between May and July and between August and October. The meadow examined was in close demographic balance along the study period. The results demonstrate that direct census provides reliable estimates of rapid shoot dynamics in T. testudinum.  相似文献   

16.
We compared daily visitation frequency indices by 4 large (> 150 g), 7 medium-size (50–150 g), 5 small (30–50 g) and 8 and tiny (< 30 g) frugivorous bird species on fleshy fruits of two native shrubs (Olea europaea subsp. africana and Chrysanthemoides monilifera subsp. monilifera), two established alien shrubs (Solanum mauritianum and Lantana camara) and two emerging alien shrubs (Myoporum tenuifolium and Pittosporum undulatum) at nine different sites in the Cape Floristic Region. Large, medium-size and tiny birds as groups displayed significantly higher visitation frequency indices on fruits of both emerging alien shrub species than the other shrub species. Small birds as a group displayed insignificantly different visitation frequency indices on fruits of both emerging and established alien shrub species but significantly higher visitation frequency indices on fruits of both emerging and established alien shrub species than on fruits of the native shrub species. However, there were significant differences in foraging frequency indices of the bird species included within each of these body size groups on fruits of the different shrub species. Among the large birds, Columba guinea and among the medium size birds Sturnus vulgaris, Streptopelia senegalensis, Turdus olivaceus and Onychognathus morio all exhibited significantly higher visitation frequency indices on fruits of both emerging alien shrub species than on fruits of the other shrub species. These findings indicate that alien plant control measures should be focused on eradicating localised populations of emerging aliens to limit preferential consumption of their fruits by birds and consequent dispersal of their seeds that germinate readily into natural areas.  相似文献   

17.
《Aquatic Botany》2007,86(1):69-75
To obtain accurate estimates of population structure for purposes of conservation planning for wild lotus (Nelumbo nucifera Gaertn.) in central China, genetic diversity among and within six populations, and clonal diversity within another two populations of the species were analyzed. The genetic diversity was high (percentage of polymorphic bands, PPB = 90.0%; Shannon's information index, I = 0.383 ± 0.234) at the species level, but low within individual study populations (PPB = 35.8%; Shannon's information index I = 0.165 ± 0.241). The mean coefficient of gene differentiation (Gst) was 0.570, indicating that 43.0% of the genetic diversity resided within the population. Analysis of molecular variance (AMOVA) indicated that 50.47% of the genetic diversity among the study populations was attributed to geographical location while 12.3% was attributed to differences in their habitats. An overall value of mean estimated number of gene flow (Nm = 0.377) indicated that there was limited gene flow among the sampled populations. The level of clonal diversity found within the populations was considerably high (Simpson's diversity index, D = 0.985) indicating that clonal diversity contributes to a major extent to the overall genetic variation in the genetic structure of N. nucifera. On the basis of the high Gst and D values detected in this study we recommend that any future conservation plans for this species should be specifically designed to include those representative populations with the highest genetic variation for both in situ conservation and germplasm collection expeditions.  相似文献   

18.
Helicoverpa armigera, an important polyphagous insect pest in agriculture, attacks more than 200 plant species of more than 30 families. Our previous study showed that the choice feeding percentages of H. armigera larvae to tobacco leaf discs treated with sweet, bitter, and hot taste substances were higher than the control leaf discs, while numb and salty substances could significantly inhibit their feeding. To quantitatively determine the synergistic effect of numb and salty substances, in this paper, the antifeeding activities of numb and salty substances and their mixtures blended in different doses or volume ratios were assayed on H. armigera larvae. The first bioassay was designed to elucidate the relative feeding preference of the larvae to the leaves from several common host species, each paired with tobacco leaf discs, and the result indicated that the most preferred host leaf by the larvae was tobacco leaf, followed by cotton and peanut leaves, suggesting that tobacco leaf was the most suitable matrix for the antifeeding bioassay, and the larval consumption of maize, pepper, or tomato leaves were significantly lower than that of tobacco leaf. The second bioassay was to test the choice feeding response of H. armigera larvae to tobacco leaf discs treated with Zanthoxylum bungeanum extracts obtained with different solvents, and the result showed that the antifeeding activity of the alcohol extracts was the strongest (93.38%), and the leaf consumption in the treatment and the control showed extremely significant difference (t = 4.23, t0.01 = 3.25, P = 0.0022), followed by the dichloromethane extracts (47.64%), while the other three solvents (water, acetone, and n-hexane) could not extract the active antifeeding components from Z. bungeanum. The larval consumption of tobacco leaf discs treated with the alcohol extracts of Z. bungeanum and NaCl solution were significantly less than their corresponding controls. The mean larval consumption of the treated leaf discs decreased with ever-increasing dosage, and the consumption of tobacco leaf discs coated with different doses of alcohol extracts of Z. bungeanum or NaCl solution showed extremely significant difference (Falcohol extract of Z. bungeanum = 3.88, F0.01 = 3.58, P = 0.0064; FNaCl solution = 54.29, F0.01 = 3.58, P = 0.0000), with maximum antifeeding effects at a dosage of 30 μL per 1.5 cm ID leaf disc. We further tested the larval consumption of tobacco leaf discs treated with alcohol extracts of Z. bungeanum in saturated NaCl solution mixed in different volume ratios, and the result showed that the choice antifeeding percentages of the treatments with 15 μL or more Z. bungeanum alcohol extracts were higher than 90%, among which the mixture with 25:15 volume ratio of Z. bungeanum alcohol extracts and saturated NaCl solution exhibited the strongest antifeeding activity, and the mean consumed leaf area of tobacco leaf discs coated with this blend was only 0.10 mm2. In the further test on feeding dose-response of the 25:15 mixture, the mean leaf consumption decreased linearly with ever-increasing dosage, with a regression equation y = ?3.9356x + 120.78(R2 = 0.9998), and the 30 μL dose could completely inhibit H. armigera feeding.  相似文献   

19.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

20.
《农业工程》2014,34(4):219-224
Large ungulate population monitoring is a crucial wildlife management tool as ungulates help in structuring and maintaining the large carnivore populations. Reliable data on population status of major ungulate prey species are still non-existent for most of the protected areas in the Indian part of the eastern Himalayan biodiversity hotspot. Twenty transects were monitored over a period of three years (2009–2011) totaling 600 km with an average length of 2 km. The estimated mean density of ungulates was 17.5 km−2 with overall density of 48.7 km−2. The wild pig Sus scrofa had the highest density (6.7 ± 1.2 km−2) among all the prey species followed by barking deer Muntiacus muntjak (3.9 ± 0.6 km−2), sambar Rusa unicolor (3.8 ± 0.5) and gaur Bos gaurus (3.5 ± 0.9 km−2). The estimated total ungulate biomass density was 2182.56 kg km−2. This prey biomass can support up to 7.2 tigers per 100 km−2. However, with two other sympatric carnivores sharing the same resources, the actual tiger numbers that can be supported will be lower. The estimated minor prey species was 31 km−2 significantly 30.6% crop damages were reported by wild pig (p = 0.01) and 35.4% was elephant (p = 0.004). This data on ungulate densities and biomass will be crucial for carnivore conservation in this understudied globally significant biodiversity hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号