首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(11):1268-1278
Epigenetic modifications, such as aberrant DNA promoter methylation, are frequently observed in cervical cancer. Identification of hypermethylated regions allowing discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3), or worse, may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions was studied using genome-wide DNA methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methylated DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium. Hypermethylated differentially methylated regions (DMRs) were identified. Validation of nine selected DMRs using BSP and MSP in cervical tissue revealed methylation in 63.2–94.7% high-grade CIN and in 59.3–100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was conducted exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples. Clinical validation of both markers in cervical scrapings from patients with an abnormal cervical smear confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion and that ROC analysis was discriminative. These markers represent the COL25A1 and KATNAL2 and their observed increased methylation upon progression could intimate the regulatory role in carcinogenesis. In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and are candidate biomarkers for early detection.  相似文献   

2.
Epigenetic modifications, such as aberrant DNA promoter methylation, are frequently observed in cervical cancer. Identification of hypermethylated regions allowing discrimination between normal cervical epithelium and high-grade cervical intraepithelial neoplasia (CIN2/3), or worse, may improve current cervical cancer population-based screening programs. In this study, the DNA methylome of high-grade CIN lesions was studied using genome-wide DNA methylation screening to identify potential biomarkers for early diagnosis of cervical neoplasia. Methylated DNA Immunoprecipitation (MeDIP) combined with DNA microarray was used to compare DNA methylation profiles of epithelial cells derived from high-grade CIN lesions with normal cervical epithelium. Hypermethylated differentially methylated regions (DMRs) were identified. Validation of nine selected DMRs using BSP and MSP in cervical tissue revealed methylation in 63.2–94.7% high-grade CIN and in 59.3–100% cervical carcinomas. QMSP for the two most significant high-grade CIN-specific methylation markers was conducted exploring test performance in a large series of cervical scrapings. Frequency and relative level of methylation were significantly different between normal and cancer samples. Clinical validation of both markers in cervical scrapings from patients with an abnormal cervical smear confirmed that frequency and relative level of methylation were related with increasing severity of the underlying CIN lesion and that ROC analysis was discriminative. These markers represent the COL25A1 and KATNAL2 and their observed increased methylation upon progression could intimate the regulatory role in carcinogenesis. In conclusion, our newly identified hypermethylated DMRs represent specific DNA methylation patterns in high-grade CIN lesions and are candidate biomarkers for early detection.  相似文献   

3.
Hypermethylated genomic DNA is a common feature in tumoral tissues, although the prevalence of this modification remains poorly understood. We aimed to determine the frequency of five tumor suppressor (TS) genes in prostate cancer and the correlation between promoter hypermethylation of these genes and low and high grade of prostate carcinomas. A total of 30 prostate tumor specimens were investigated for promoter methylation status of TS hypermethylated in cancer 1 (HIC1), death-associated protein kinase 1 (DAPK1), secreted frizzled-related protein 2 (SFRP2), cyclin-dependent kinase inhibitor 2A (p16), and O-6-methylguanine-DNA methyltransferase (MGMT) genes by using bisulfite modifying method. A high frequency of promoter hypermethylation was found in HIC1 (70.9%), SFRP2 (58.3%), and DAPK1 (33.3%) genes in tumor samples that were examined. The current data show high frequency of hypermethylation changes in HIC1, SFRP2, and DAPK1 genes in prostate carcinomas of high Gleason Score (GS).  相似文献   

4.
摘要 目的:探讨抑癌基因DAPK、TIG1高甲基化在口腔白斑中表达状态及其对口腔癌发生发展中的作用。方法:取77例口腔白斑、32例口腔鳞癌、32份正常口腔黏膜组织,用实时定量甲基化特异性PCR技术检测组织中DAPK、TIG1高甲基化表达并进行统计学分析。结果:DAPK在口腔鳞癌组织中高甲基化表达率为46.9%,表达量为(0.0728±0.1617),明显高于其在口腔白斑组织(19.5%,0.0070±0.0172)和口腔正常组织(18.8%,0.0021±0.0050)中的表达,差异有统计学意义(P<0.05)。DAPK高甲基化表达与口腔白斑组织上皮异常增生程度相关,上皮增生高风险组相对于低风险组DAPK高甲基化表达风险增加(OR,1.013;95% CI,1.004-1.023;P=0.004)。TIG1高甲基化在正常组织中未表达,在口腔鳞癌组织和口腔白斑组织表达为(28.1%,0.0174±0.0440)和(27.3%,0.0035±0.0076),与正常组织相比具有统计学意义(P<0.05)。结论:抑癌基因 DAPK、TIG1高甲基化有望成为口腔黏膜癌变早期标志物。  相似文献   

5.
Cervical cancer development following a persistent infection with high-risk human papillomavirus (hrHPV) is driven by additional host-cell changes, such as altered DNA methylation. In previous studies, we have identified 12 methylated host genes associated with cervical cancer and pre-cancer (CIN2/3). This study systematically analyzed the onset and DNA methylation pattern of these genes during hrHPV-induced carcinogenesis using a longitudinal in vitro model of hrHPV-transformed cell lines (n = 14) and hrHPV-positive cervical scrapings (n = 113) covering various stages of cervical carcinogenesis. DNA methylation analysis was performed by quantitative methylation-specific PCR (qMSP) and relative qMSP values were used to analyze the data. The majority of genes displayed a comparable DNA methylation pattern in both cell lines and clinical specimens. DNA methylation onset occurred at early or late immortal passage, and DNA methylation levels gradually increased towards tumorigenic cells. Subsequently, we defined a so-called cancer-like methylation-high pattern based on the DNA methylation levels observed in cervical scrapings from women with cervical cancer. This cancer-like methylation-high pattern was observed in 72% (38/53) of CIN3 and 55% (11/20) of CIN2, whereas it was virtually absent in hrHPV-positive controls (1/26). In conclusion, hrHPV-induced carcinogenesis is characterized by early onset of DNA methylation, typically occurring at the pre-tumorigenic stage and with highest DNA methylation levels at the cancer stage. Host-cell DNA methylation patterns in cervical scrapings from women with CIN2 and CIN3 are heterogeneous, with a subset displaying a cancer-like methylation-high pattern, suggestive for a higher cancer risk.  相似文献   

6.
7.
RL Huang  CC Chang  PH Su  YC Chen  YP Liao  HC Wang  YT Yo  TK Chao  HC Huang  CY Lin  TY Chu  HC Lai 《PloS one》2012,7(7):e41060

Background

Despite of the trend that the application of DNA methylation as a biomarker for cancer detection is promising, clinically applicable genes are few. Therefore, we looked for novel hypermethylated genes for cervical cancer screening.

Methods and Findings

At the discovery phase, we analyzed the methylation profiles of human cervical carcinomas and normal cervixes by methylated DNA immunoprecipitation coupled to promoter tiling arrays (MeDIP-on-chip). Methylation-specific PCR (MSP), quantitative MSP and bisulfite sequencing were used to verify the methylation status in cancer tissues and cervical scrapings from patients with different severities. Immunohistochemical staining of a cervical tissue microarray was used to confirm protein expression. We narrowed to three candidate genes: DBC1, PDE8B, and ZNF582; their methylation frequencies in tumors were 93%, 29%, and 100%, respectively. At the pre-validation phase, the methylation frequency of DBC1 and ZNF582 in cervical scraping correlated significantly with disease severity in an independent cohort (n = 330, both P<0.001). For the detection of cervical intraepithelial neoplasia 3 (CIN3) and worse, the area under the receiver operating characteristic curve (AUC) of ZNF582 was 0.82 (95% confidence interval  = 0.76–0.87).

Conclusions

Our study shows ZNF582 is frequently methylated in CIN3 and worse lesions, and it is demonstrated as a potential biomarker for the molecular screening of cervical cancer.  相似文献   

8.
Tumor-specific genetic or epigenetic alterations have been detected in serum DNA in case of various types of cancers. In breast cancer, the detection of tumor suppressor gene hypermethylation has been reported in several body fluids. Promoter hypermethylation of some genes like MYOD1, CALCA, hTERT, etc. has also been detected in serum samples from cervical cancer. The present study is the first report on the comparison of promoter hypermethylation of tumor suppressor genes like p14, p15, p16, p21, p27, p57, p53, p73, RARβ2, FHIT, DAPK, STAT1, and RB1 genes in paired biopsy and serum samples from cervical cancer patients among north Indian population. This is also the first report on the hypermethylation of these genes in serum samples from cervical cancer patients among north Indian population. According to the results of the present study, promoter hypermethylation of these genes can also be detected in serum samples of cervical cancer patients. The sensitivity of detection of promoter hypermethylalion in serum samples of cervical cancer patients as compared to paired biopsy samples was found to be around 83.3%. It was observed that promoter hypermethylation was mainly observed in the serum samples in the higher stages and very rarely in the lower stages. The present study clearly showed that serum of patients with cervical cancer can also be used to study methylated genes as biomarkers.  相似文献   

9.
Next generation sequencing (NGS) is an emerging technology becoming relevant for genotyping of clinical samples. Here, we assessed the stability of amplicon sequencing from formalin-fixed paraffin-embedded (FFPE) and paired frozen samples from colorectal cancer metastases with different analysis pipelines. 212 amplicon regions in 48 cancer related genes were sequenced with Illumina MiSeq using DNA isolated from resection specimens from 17 patients with colorectal cancer liver metastases. From ten of these patients, paired fresh frozen and routinely processed FFPE tissue was available for comparative study. Sample quality of FFPE tissues was determined by the amount of amplifiable DNA using qPCR, sequencing libraries were evaluated using Bioanalyzer. Three bioinformatic pipelines were compared for analysis of amplicon sequencing data. Selected hot spot mutations were reviewed using Sanger sequencing. In the sequenced samples from 16 patients, 29 non-synonymous coding mutations were identified in eleven genes. Most frequent were mutations in TP53 (10), APC (7), PIK3CA (3) and KRAS (2). A high concordance of FFPE and paired frozen tissue samples was observed in ten matched samples, revealing 21 identical mutation calls and only two mutations differing. Comparison of these results with two other commonly used variant calling tools, however, showed high discrepancies. Hence, amplicon sequencing can potentially be used to identify hot spot mutations in colorectal cancer metastases in frozen and FFPE tissue. However, remarkable differences exist among results of different variant calling tools, which are not only related to DNA sample quality. Our study highlights the need for standardization and benchmarking of variant calling pipelines, which will be required for translational and clinical applications.  相似文献   

10.
To investigate intra-tumoural coexistence and heterogeneity of aberrant promoter hypermethylation of different tumour suppressor genes in melanoma, we analyzed the intra-tumoural distribution of promoter methylation of RASSF1A, p16, DAPK, MGMT, and Rb in 339 assays of 34 tumours (15 melanoma primaries, 19 metastases) by methylation-specific PCR, correlation to histopathology and RASSF1A expression. We detected promoter hypermethylation of at least one gene in 74% of tumours (30%, 52%, 33%, 20%, and 40% for RASSF1A, p16, DAPK, MGMT and Rb, respectively). 70% of the cases exhibited an inhomogeneous methylation pattern (17%, 45%, 33%, 20%, and 40% for RASSF1A, p16, DAPK, MGMT and Rb, respectively). Samples from the core of the tumours represented the methylation state of the whole tumours more accurately than the periphery. Local intra-tumoural correlation was found between the promoter hypermethylation state of p16 and Rb or p16 and DAPK, or epitheloid tumour cell type and RASSF1A or p16 methylation. Mitosis rate and sex was correlated with methylation of RASSF1A. Histological results confirmed that promoter hypermethylation of RASSF1A led to aberrant expression patterns. We conclude that intra-tumoural inhomogeneity of promoter hypermethylation is frequent in melanoma and this supports the hypothesis of clonal instability during progression of melanomas. In prognosis studies, missing the intra-tumoural sample representativeness may result in a reduction of the sensitivities or specificities.  相似文献   

11.
12.
13.
Purpose: Promoter hypermethylation of tumor suppressor genes may serve as a promising biomarker for the diagnosis of cancer. Cell-free circulating DNA (cf-DNA) shares hypermethylation status with primary tumors. This study investigated promoter hypermethylation of five tumor suppressor genes as markers in the detection of nasopharyngeal carcinoma (NPC) in serum samples. Methods: cf-DNA was extracted from serum collected from 40 NPC patients and 41 age- and sex-matched healthy subjects. The promoter hypermethylation status of the five genes (RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1) was assessed by methylation-specific PCR after sodium bisulfite conversion. Differences in the methylation status of these five genes between NPC patients and healthy subjects were compared. Results: The concentration of cf-DNA in the serum of NPC patients was significantly higher than that in normal controls. The five tumor suppressor genes – RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1 – were found to be methylated in 17.5%, 22.5%, 25.0%, 51.4% and 64.9% of patients, respectively. The combination of four-gene marker – CDKN2A, DLEC1, DAPK1 and UCHL1 – had the highest sensitivity and specificity in predicting NPC. Conclusion: Screening DNA hypermethylation of tumor suppressor genes in serum was a promising approach for the diagnosis of NPC.  相似文献   

14.
The inactivation of tumor-related genes through the aberrant methylation of promoter CpG islands is thought to contribute to tumor initiation and progression. We therefore investigated promoter methylation events involved in cutaneous melanoma by screening 30 genes of interest for evidence of promoter hypermethylation, examining 20 melanoma cell lines and 40 freshly procured melanoma samples. Utilizing quantitative methylation-specific PCR, we identified five genes (SOCS1, SOCS2, RAR-beta 2, TNFSF10C, and TNFSF10D) with hypermethylation frequencies ranging from 50% to 80% in melanoma cell lines as well as freshly procured tissue samples. Eighteen genes (LOX, RASSF1A, WFDC1, TM, APC, TFPI2, TNFSF10A, CDKN2A, MGMT, TIMP3, ASC, TPM1, IRF8, CIITA-PIV, CDH1, SYK, HOXB13, and DAPK1) were methylated at lower frequencies (2-30%). Two genes (CDKN1B and PTEN), previously reported as methylated in melanoma, and five other genes (RECK, IRF7, PAWR, TNFSF10B, and Rb) were not methylated in the samples screened here. Daughter melanoma cell lines showed identical methylation patterns when compared with original samples from which they were derived, as did synchronous metastatic lesions from the same patient. We identified four genes (TNFSF10C, TNFSF10D, LOX, and TPM1) that have never before been identified as hypermethylated in melanoma, with an overall methylation frequency of 60, 80, 50, and 10%, respectively, hypothesizing that these genes may play an important role in melanoma progression.  相似文献   

15.
16.
Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.  相似文献   

17.
Activation of canonical Wnt/beta-catenin pathway in Invasive Ductal Carcinoma of Breast (IDCs) was recently reported from our laboratory. Herein, we analyzed promoter methylation status of CDH1 and Adenomatous polyposis coli (APC) genes in 50 IDCs and correlated with expression of E-cadherin (E-CD) and APC proteins and with activation of oncogenic Wnt/beta-catenin signaling pathway components, Dvl, beta-catenin and CyclinD1. Further, Wnt/beta-catenin driven epithelial mesenchymal transition (EMT) was investigated by correlating the expression of Dvl, beta-catenin and CyclinD1 with vimentin expression in these IDCs. Promoter hypermethylation was observed in 25/50 (50%) IDCs for CDH1 and in 11/50 (22%) tumors for APC, associated with loss of expression of E-CD and APC proteins; concordant hypermethylation of these genes was observed in paired patients' sera. Further, 57% of tumors harboring CDH1 methylation and 50% tumors harboring the methylated APC gene showed nuclear localization of beta-catenin, suggesting activation of the canonical Wnt/beta-catenin pathway. Our study demonstrates significant association between vimentin expression and nuclear beta-catenin (p=0.001; Odds ratio (OR)=25.6) and Dvl (p=0.023; OR=8.0), suggesting that EMT may be driven by Wnt/beta-catenin activation in IDCs. In conclusion, we demonstrate correlation of CDH1 and APC promoter methylation with loss of E-CD and APC proteins and with activation of Wnt/beta-catenin signaling pathway. Association of nuclear Dvl and beta-catenin with vimentin expression suggests the importance of Wnt/beta-catenin pathway driven EMT in IDCs. The concordance between CDH1 and APC methylation in IDCs and paired circulating DNA underscores the utility of serum DNA as a non-invasive tool for methylation analysis in IDC patients.  相似文献   

18.
MGMT hypermethylation: a prognostic foe, a predictive friend   总被引:2,自引:0,他引:2  
Jacinto FV  Esteller M 《DNA Repair》2007,6(8):1155-1160
Alkylation of DNA at the O(6)-position of guanine is one of the most critical events leading to mutation, cancer, and cell death. O(6)-alkylguanine-DNA alkyltransferase (AGT), also known as O(6)-methylguanine-DNA methyltransferase (MGMT), is the DNA repair protein responsible for removing alkylation adducts from the O(6)-position of guanine in DNA. The promoter CpG island hypermethylation-associated gene silencing of MGMT is associated with a wide spectrum of human tumors. This epigenetic inactivation of MGMT has two main consequences in human cancer. First, it uncovers a new mutator pathway that causes the accumulation of G-to-A transition mutations that can affect genes required for genomic stability. Second, there is a strong and significant positive correlation between MGMT promoter hypermethylation and increased tumor sensitivity to alkylating drugs. These findings underline the importance of MGMT promoter hypermethylation in basic and translational cancer research.  相似文献   

19.
Epigenetic silencing of the MGMT gene in cancer.   总被引:8,自引:0,他引:8  
Silencing of the O6-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, plays a critical role in the development of cancer. The gene product, functioning normally, removes a methyl group from mutagenic O6-methylguanine, which is produced by alkylating agents and can make a mismatched pair with thymine, leading to transition mutation through DNA replication. MGMT is epigenetically silenced in various human tumors. It is well known that DNA hypermethylation at the promoter CpG island plays a pivotal role in the epigenetic silencing of tumor suppressor genes. MGMT silencing, however, occurs without DNA hypermethylation in some cancer cells. Dimethylation of histone H3 lysine 9 and binding of methyl-CpG binding proteins are common and essential in MGMT-silenced cells. Silencing of MGMT has been shown to be a poor prognostic factor but a good predictive marker for chemotherapy when alkylating agents are used. In this review, we describe recent advances in understanding the silencing of MGMT and its role in carcinogenesis; epigenetic mechanisms; and clinical implications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号