首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Panax ginseng C. A. Meyer is one of the important nutraceutical and medicinal plants, which is used worldwide. Until now, ginseng has been reported to contain saponins, antioxidants, peptides, polysaccharides, fatty acids, vitamins, alkaloids, lignans, and flavonoids. The saponins, known as ginsenosides, are widely believed to be the major bioactive compounds of ginseng. In this article, ginsenoside biosynthesis pathway and key enzymes regulation are also described. This review provides a reference for improving ginsenoside contents through regulation of ginsenoside biosynthesis pathway.  相似文献   

4.
Glutamate decarboxylase (GAD) catalyzes the conversion of l-glutamate to γ-aminobutyric acid (GABA). A full-length cDNA encoding GAD (designated as PgGAD) was isolated and characterized from the root of Panax ginseng C. A. Meyer. The length cDNA of PgGAD was 1881 bp and contained a 1491 bp open reading frame (ORF) encoding a glutamate decarboxylase protein of 496 amino acids, possessing a Ser-X-X-Lys active site, which belongs to the GAD group. The deduced amino acid sequence of the PgGAD was classified in the plant GAD family and has 76–85% high similarity with other plants as like petunia, Arabidopsis, tomato. Secondary structure of PgGAD was predicted by using SOPMA software program. Southern blot analysis of genomic DNA suggests that, there is more than one copy of the PgGAD gene. The organ specific gene expression pattern also studied in P. ginseng seedlings, in which the stem showed elevated expression than root, leaf, bud and rhizomes. Along with this, we also confirmed the gene expression of PgGAD under various abiotic stresses like temperature stress, osmotic stress, anoxia, oxidative stress, and mechanical damage. Temporal analysis of gene expression except exposure of oxidative stress revealed an enhanced expression after each stresses. The enzyme activity of PgGAD was stimulated to 2-fold under cold stress.  相似文献   

5.
6.
Biomass growth, ginsenoside and polysaccharide production in different ginseng tissue cultures, including callus culture, adventitious root culture and hairy root culture, were studied, and the active component contents were compared with that of native ginseng roots. The adventitious root culture was confirmed to be a very nice system, which grew fast and contained a rather high content of ginsenosides. Then, the culture conditions of adventitious root culture were optimized. The results showed that salt strength, various sucrose concentrations, ammonia/nitrate ratios and phosphate concentrations had significant influences on adventitious roots growth, secondary metabolite and polysaccharide synthesis in ginseng. The best culture conditions for ginsenoside production seemed to be 0.75 salt strength Murashige and Skoog medium, 4% sucrose, 9 mM ammonia to 36 mM nitrate, and 1.25 mM phosphate, while the optimization for polysaccharide accumulation seemed to be 0.75 salt strength, 6% sucrose, 9 mM ammonia to 36 mM nitrate and 3.75 mM phosphate source. Appropriate conditions allowed for a maximum ginsenoside yield of up to 132.90 mg/L and polysaccharide yield of 407.63 mg/L to be obtained after 4 weeks of culture.  相似文献   

7.
A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-d) after 4 weeks of culture in darkness. A higher response (66%) of embryogenic callus was induced on 0.45 μM 2,4-d. Higher numbers of globular- (31), heart- (17), torpedo- (12), and cotyledon-stage (8) embryos per explant were obtained by culturing embryogenic callus on MS with 3% sucrose, 0.24% Phytagel™, and devoid of growth regulators after 8 weeks culture in darkness. Continuous sub-culturing of embryogenic callus on medium containing 2,4-d yielded only compact callus. Desiccation of embryos for 3 days in darkness at 25 ± 2°C followed by cold storage at 4°C in darkness for 8 weeks favored embryo germination and development of plantlets. Cotyledon-stage embryos subjected to desiccation and chilling treatment cultured on MS with 3% sucrose, 0.24 Phytagel™, 0.44 μM 6-benzylaminopurine (BA), and 0.29 μM gibberellic acid germinated at a higher frequency (61%) than with 0.44 μM BA alone and control cultures. Germinated plantlets developed a shoot and root, were acclimatized successfully, and maintained in a growth room for plantlet development.  相似文献   

8.
Cyclotides are small plant disulfide-rich and cyclic proteins with a diverse range of biological activities. Cyclotide-like genes show key sequence features of cyclotides and are present in the Poaceae. In this study the cDNA of the nine cyclotide-like genes were cloned and sequenced using 3′RACE from Zea mays. The gene expression of two of these genes (Zmcyc1 and Zmcyc5) were analyzed by real-time PCR in response to biotic (Fusarium graminearum, Ustilago maydis and Rhopalosiphum maydis) and abiotic (mechanical wounding, water deficit and salinity) stresses, as well as in response to salicylic acid and methyl jasmonate elicitors to mimic biotic stresses. All isolated genes showed significant similarity to other cyclotide-like genes and were classified in two separate clusters. Both Zmcyc1 and Zmcyc5 were expressed in all studied tissues with the highest expression in leaves and lowest expression in roots. Wounding, methyl jasmonate and salicylic acid significantly induced the expression of Zmcyc1 and Zmcyc5 genes, but the higher expression was observed for Zmcyc1 as compared with Zmcyc5. Expression levels of these two genes were also induced in inoculated leaves with F. graminearum, U. maydis and also in response to insect infestation. In addition, the 1000-base-pairs (bp) upstream of the promoter of Zmcyc1 and Zmcyc5 genes were identified and analyzed using the PlantCARE database and consequently a large number of similar biotic and abiotic cis-regulatory elements were identified for these two genes.  相似文献   

9.
10.
We tested desiccation and/or vitrification procedures to cryopreserve the adventitious roots of Panax ginseng, the source of commercially produced ginsenosides. When only desiccation was applied, the post-freeze survival of 3- to 4-mm root tips was <14% regardless of the composition of the preculture medium or the explant origin. Callus formation was frequently observed after cryopreservation. In contrast, 90% survival and 32.5% root formation efficiency were achieved after cryopreservation when a vitrification protocol was followed. Adventitious root cultures in flasks and bioreactors were reestablished from root tips cryopreserved by vitrification. A prolonged lag-phase and lower biomass production were recorded in post-freeze-regenerated cultures compared with control roots that were subcultured four times in flasks. However, biomass accumulations did not differ between control and regenerated roots at the end of the sixth subculturing period. After 40 days of culture in bioreactors, a mean value of 12.5 g dw L−1 was recorded for post-freeze-regenerated cultures versus 9.1 g dw L−1 for the control roots. Production of triol and diol ginsenosides in our bioreactor cultures also was enhanced after cryopreservation, by 41.0% and 89.8%, respectively. These results suggest that the vitrification method is successful for cryopreservation of P. ginseng adventitious roots.  相似文献   

11.
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04′N 126°57′E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25–30 °C, pH 6.5–7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA–DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).  相似文献   

12.
It has been shown previously that the rolC gene from Agrobacterium tumefaciens gene was stably and highly expressed in 15-year-old Panax ginseng transgenic cell cultures. In the present report, we analyze in detail the nucleotide composition of the rolC and nptII (neomycin phosphotransferase) genes, which is the selective marker used for transgenic cell cultures of P. ginseng. It has been established that the nucleotide sequences of the rolC and nptII genes underwent mutagenesis during cultivation. Particularly, 1–4 nucleotide substitutions were found per sequence in the 540 and 798 bp segments of the complete rolC and nptII genes, respectively. Approximately half of these nucleotide substitutions caused changes in the structure of the predicted gene product. In addition, we attempted to determine the rate of accumulation of these changes by comparison of DNA extracted from P. ginseng cell cultures from 1995 to 2007. It was observed that the frequency of nucleotide substitutions for the rolC and nptII genes in 1995 was 1.21 ± 0.02 per 1,000 nucleotides analyzed, while in 2007, the nucleotide substitutions significantly increased (1.37 ± 0.07 per 1,000 nucleotides analyzed). Analyzing the nucleotide substitutions, we found that substitution to G or to C nucleotides significantly increased (in 1.9 times) in the rolC and nptII genes compared with P. ginseng actin gene. Finally, the level of nucleotide substitutions in the rolC gene was 1.1-fold higher when compared with the nptII gene. Thus, for the first time, we have experimentally demonstrated the level of nucleotide substitutions in transferred genes in transgenic plant cell cultures.  相似文献   

13.
14.
A comparative analysis of the genetic variability and differentiation of rare medicinal ginseng species, Panax vietnamensis Ha et Grushv. and P. ginseng C.A. Meyer, was carried out using inter-simple sequence repeat markers. It was demonstrated that all the genetic diversity parameters of Vietnamese ginseng were high and considerably exceeded those of P. ginseng. On the contrary, the level of genetic differentiation was higher in true ginseng. It is suggested that the differences in the levels of genetic variability and differentiation of the two ginseng species were influenced by the demographic history, peculiarities of the reproductive system, and human activity.  相似文献   

15.
16.
A novel strain DCY105T was isolated from soil collected from the rhizosphere of ginseng (Panax ginseng), in Gochang, Republic of Korea. Strain DCY105T is Gram-reaction-negative, white, non-motile, non-flagellate, rod-shaped and aerobic. The bacteria grow optimally at 30°C, pH 6.5–7.0 and in the absence of NaCl. Phylogenetically, strain DCY105T is most closely related to Achromobacter marplatensis LMG 26219T (96.81%). The DNA G+C content of strain DCY105T was 64.4 mol%. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were amongst the major polar lipids. C16:00, C8:03OH and iso-C17:03OH were identified as the major fatty acids present in DCY105T. The results of physiological and biochemical tests allowed strain DCY105T to be differentiated phenotypically from other recognized species belonging to the genus Achromobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Achromobacter panacis sp. nov. is proposed with the type strain designated as DCY105T (=CCTCCAB 2015193T =KCTC 42751T).  相似文献   

17.
Panax ginseng C.A. Meyer, commonly known as Korean or Asian ginseng, is a perennial herb native to Korea and China. Its roots are highly prized for several medicinal properties. The present study describes development and characterization of twenty-two polymorphic microsatellite markers for this species. A total of 99 alleles were detected with an average of 4.5 alleles per locus across 20 accessions. Values for observed (H O ) and expected (H E ) heterozygosities ranged from 0.05 to 1.00 and from 0.18 to 0.73, respectively. Eleven loci deviated from Hardy–Weinberg equilibrium (P < 0.001). Significant (P < 0.05) heterozygote deficiency was observed at 13 loci. Exact test for linkage disequilibrium showed significant values (P < 0.05) between 12 pairs of loci. These microsatellite markers provide powerful tools for understanding population and conservation genetics of this species and also for genetic differentiation and authentication of different Panax species being used in commercial ginseng products.  相似文献   

18.
The ontogeny of perennial polycarpic herb Panax ginseng C.A. Mey. (Araliaceae) under plantation conditions was described. Three periods (latent, pregenerative, and generative) and eight age stages have been identified in the ontogeny of cultivated P. ginseng. The generative period of this species is the longest ontogenetic period, which determines the timing of its cultivation in plantations.  相似文献   

19.
20.
Panax ginseng, commonly known as Korean ginseng, is a valued source of herbal medicine in Korea and China. We have developed and characterized 35 microsatellite markers in P. ginseng from available BAC end sequences. Characterization of these 35 SSR primer pairs in 14 cultivars of P. ginseng showed 12 primer pairs to be polymorphic and 19 primer pairs to be monomorphic, while the remaining four primer pairs did not produce any product. The number of alleles amplified ranged from 4 to 8 per primer pair, with an average of six alleles per locus. The expected and observed heterozygosities ranged from 0.7500 to 0.9678 and 0.5645 to 0.7109, respectively. None of these loci deviated from Hardy–Weinberg equilibrium. All of the functional primer pairs of P. ginseng showed cross-species transferability with Panax quinquefolium. The cross-species transferable markers could be used for ginseng cultivar identification, for genomic studies, including mapping of specific trait QTL/genes, and for measuring conservation of ginseng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号