首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor protein p53 is induced upon DNA damage essentially by post-translational regulatory mechanisms, which lead to a substantial increase of p53 levels. To exploit this essential property of p53, we developed a novel reporter system for monitoring accumulation and subcellular translocation of p53 protein, which is able to function as a simple test for detecting mutagenic and genotoxic stress in human cells. For this purpose, we constructed a plasmid with a specific translational TP53::EGFP gene fusion and selected stable transfected clones in the human cell line HEK293, in which p53 is functionally stabilized due to the expression of the transgenic adenoviral E1A oncoproteins. HEK293-TP53::EGFP clones may be used as a living cell system for monitoring not only of the induction of p53 protein in the cell, but also of its subcellular localization. Using this human reporter cell system, we examined levels of p53 by fluorescence microscopy and by FACS analysis following treatment with several classes of genotoxic and carcinogenic compounds. All tested DNA damaging agents caused a significant increase of intracellular p53-EGFP levels in a concentration-dependent manner. On the other hand, non-genotoxic carcinogens and stress conditions that cannot damage DNA were not able to induce p53-EGFP accumulation. The induction effect caused by genotoxic stress was found to be dependent on the endogenous p53 status, because it was not observed in p53-deficient cell lines. This corroborates the notion that p53 may be used as an universal sensor for genotoxic stress and demonstrates the usefulness of HEK293-p53-EGFP cells as a reporter system for identification of mutagens and genotoxic carcinogens in human cells by means of visualizing and monitoring intracellular p53 levels and localization.  相似文献   

2.
3.
Since inhibitors of sphingosine kinases (SK1, SK2) have been shown to induce p53-mediated cell death, we have further investigated their role in regulating p53, stress activated protein kinases and XBP-1s in HEK293T cells. Treatment of these cells with the sphingosine kinase inhibitor, SKi, which fails to induce apoptosis, promoted the conversion of p53 into two proteins with molecular masses of 63 and 90 kDa, and which was enhanced by over-expression of ubiquitin. The SKi induced conversion of p53 to p63/p90 was also enhanced by siRNA knockdown of SK1, but not SK2 or dihydroceramide desaturase (Degs1), suggesting that SK1 is a negative regulator of this process. In contrast, another sphingosine kinase inhibitor, ABC294640 only very weakly stimulated formation of p63/p90 and induced apoptosis of HEK293T cells. We have previously shown that SKi promotes the polyubiquitination of Degs1, and these forms positively regulate p38 MAPK/JNK pathways to promote HEK293T cell survival/growth. siRNA knockdown of SK1 enhanced the activation of p38 MAPK/JNK pathways in response to SKi, suggesting that SK1 functions to oppose these pro-survival pathways in HEK293T cells. SKi also enhanced the stimulatory effect of the proteasome inhibitor, MG132 on the expression of the pro-survival protein XBP-1s and this was reduced by siRNA knockdown of SK2 and increased by knockdown of p53. These findings suggest that SK1 and SK2 have opposing roles in regulating p53-dependent function in HEK293T cells.  相似文献   

4.
5.
6.
7.
The cellular homologues Mdm2 and MdmX play critical roles in regulating the activity of the p53 tumor suppressor in damaged and non-damaged cells and during development in mice. Recently, we have utilized genetically defined primary cells and mice to reveal that endogenous levels of MdmX can also suppress multipolar mitosis and transformation in hyperploid p53-deficient cells and tumorigenesis in p53-deficient mice. These MdmX functions are not shared by Mdm2, and are distinct from the well-established ability of MdmX to complex with and inhibit p53 activity. Here we discuss some of the ramifications of MdmX loss in p53-deficient cells and mice, and we explore further the fate of MdmX/p53-double null embryonic fibroblasts undergoing multi-polar cell division using time-lapse video microscopy. We also discuss the relationship between chromosomal loss, cell proliferation, and the tumorigenic potential of p53-deficient cells lacking MdmX.  相似文献   

8.
目的:探讨癌基因Src在体外培养骨肉瘤细胞侵袭伪足形成中的作用。方法:构建Src sh RNA慢病毒表达载体,在HEK293T细胞中包装慢病毒,感染HT-1080骨肉瘤细胞,经嘌呤霉素加压筛选,获得稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src;实时定量PCR和Western Blot法检测基因沉默效率;采用原位明胶酶谱法检测侵袭伪足形成;采用侵袭小室实验检测下调Src基因表达对HT-1080细胞侵袭力的影响。结果:成功构建稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src及对照细胞系HT-1080-shluc,经实时定量PCR和Western Blot检测,与对照细胞系相比,HT-1080-sh Src细胞中Src基因表达下调3倍以上;下调HT-1080细胞中Src基因表达能显著抑制HT-1080细胞侵袭伪足形成及其对细胞外基质的降解能力;下调Src基因表达能显著抑制骨肉瘤细胞侵袭力。结论:癌基因Src参与调节骨肉瘤细胞HT-1080侵袭伪足形成,促进肿瘤侵袭、转移。  相似文献   

9.
Inactivation of p53 protein by endogenous and exogenous carcinogens is involved in the pathogenesis of different human malignancies. In cancer associated with SV-40 DNA tumor virus, p53 is considered to be non-functional mainly due to its interaction with the large T-antigen. Using the 293T cell line (HEK293 cells transformed with large T antigen) as a model, we provide evidence that p53 is one of the critical downstream targets involved in FK866-mediated killing of 293T cells. A reduced rate of apoptosis and an increased number of cells in S-phase was accompanied after knockdown of p53 in these cells. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway. Additionally, knockdown of p53 attenuated the effect of FK866 on cell proliferation, apoptosis, and cell cycle arrest. The data presented here shed light on two important facts: (1) that p53 in 293T cells is active in the presence of FK866, an inhibitor of NAMPT pathway; (2) the apoptosis induced by FK866 in 293T cells is associated with increased acetylation of p53 at Lys382, which is required for the functional activity of p53.  相似文献   

10.
转录因子p53与AP-2基因家族成员AP-2beta发生突变后,均会导致个体出现相应的疾病。本文首先利用两个重组质粒p CMV-HA-p53和p Myc-AP-2beta,转染永生化的胚胎肾细胞HEK293(野生型),在细胞中表达相应蛋白质。通过免疫共沉淀实验证明AP-2beta和p53蛋白在体内可以相互作用。并将梯度增加的p MycAP-2beta质粒及等量p CMV-HA-p53质粒转染到HEK293细胞,SDS-聚丙烯酰胺凝胶电泳实验证明AP-2beta能正向调控p53蛋白的表达。为了进一步探讨AP-2beta与p53的作用机制,利用蛋白质合成抑制剂CHX(cycloheximide)处理转染了AP-2beta与p53表达质粒的细胞,实验结果说明,AP-2beta能增加p53蛋白的稳定性来调控p53的表达。  相似文献   

11.
12.
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.  相似文献   

13.
14.
15.
16.
The p53 protein is a major regulator of cell cycle progression and apoptosis. We used a p53-enhanced green fluorescent protein (EGFP) construct for transfections into human breast cancer (MCF-7) cells. Cells expressing p53-EGFP showed an increased apoptotic index compared to cells transfected with EGFP alone. Interestingly, apoptotic cells showed localization of p53-EGFP to both nuclei and cytoplasm, whereas non-apoptotic cells usually only showed nuclear localization of p53-EGFP. This result is in agreement with the hypothesis that p53 induces apoptosis by interaction with both nuclear and cytoplasmic targets. Transfected p53-deficient osteosarcoma cells were used for immunofluorescence quantitation. The intensity of immunofluorescence for either p53 or EGFP showed excellent linear correlation to the EGFP autofluorescence, proving that measurements of immunofluorescence intensities can be used for determining endogenous protein levels.  相似文献   

17.
NIRF(Np95/ICBP90-like RING finger protein)是2002年发现的一种核蛋白,其功能涉及细胞增殖调节、蛋白多聚泛素化降解、细胞癌变进程控制等领域.已有研究报道,NIRF能与p53相互作用, NIRF本身也是一个高度调节蛋白,在细胞正常的生理状态下发挥泛素化E3连接酶的作用,结合p53并将其降解,但NIRF与p53结合的蛋白结合域目前尚不清楚.本文研究证明,NIRF能与p53结合成复合体参与泛素化蛋白降解途径,并测定出NIRF与p53结合的区域.为了检测NIRF的蛋白结合域,将空载体和NIRF缺失突变体质粒分别转染于HEK293细胞,蛋白表达水平通过Western印迹用两种抗体分别检测. 结果显示,所有的突变体都能在细胞中表达,并且两种抗体检测结果完全一致. 同时,免疫共沉淀技术用于进一步分析实验结果. 由于泛素化蛋白通常伴随蛋白酶体通路介导的降解,免疫共沉淀的蛋白纯化过程中用蛋白酶体抑制剂MG-132以抑制蛋白降解. 本研究结果显示,NIRF 通过PHD区域与p53形成复合体. 该复合体可能参与蛋白分选、蛋白降解、DNA修复以及细胞凋亡等一系列重要的细胞活动,从而形成与细胞增殖相关的新的信号通路,在肿瘤的发生发展中可能发挥某种程度的作用.  相似文献   

18.
In the present study, we observed that the Golgi-SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) GS28 forms a complex with p53 in HEK (human embryonic kidney)-293 cells. Given that p53 represents a tumour suppressor that affects the sensitivity of cancer cells to various chemotherapeutic drugs, we examined whether GS28 may influence the level of sensitivity to the DNA-damaging drug cisplatin. Indeed, knockdown of GS28 using short-hairpin RNA (shGS28) induced resistance to cisplatin in HEK-293 cells. On the other hand, overexpression of GS28 sensitized HEK-293 cells to cisplatin, whereas no sensitization effect was noted for the mitotic spindle-damaging drugs vincristine and taxol. Accordingly, we observed that knockdown of GS28 reduced the accumulation of p53 and its pro-apoptotic target Bax. Conversely, GS28 overexpression induced the accumulation of p53 and Bax as well as the pro-apoptotic phosphorylation of p53 on Ser(46). Further experiments showed that these cellular responses could be abrogated by the p53 inhibitor PFT-α (pifithrin-α), indicating that GS28 may affect the stability and activity of p53. The modulatory effects of GS28 on cisplatin sensitivity and p53 stability were absent in lung cancer H1299 cells which are p53-null. As expected, ectopic expression of p53 in H1299 cells restored the modulatory effects of GS28 on sensitivity to cisplatin. In addition, GS28 was found to form a complex with the p53 E3 ligase MDM2 (murine double minute 2) in H1299 cells. Furthermore, the ubiquitination of p53 was reduced by overexpression of GS28 in cells, confirming that GS28 enhances the stability of the p53 protein. Taken together, these results suggest that GS28 may potentiate cells to DNA-damage-induced apoptosis by inhibiting the ubiquitination and degradation of p53.  相似文献   

19.
为了探讨人野生型p53(wt-p53)基因增强大肠癌细胞化疗敏感性的分子生物学机制,将携带wt p53基因的质粒分别转染两种p53基因突变的人大肠癌细胞系HT-29及SW620,分析细胞中p53及细胞周期蛋白D1(cyclin D1)蛋白的表达水平;将化疗药物5 氟尿嘧啶(5-fluorouracil,5-FU)以不同浓度、不同时间分别作用于HT-29及SW620细胞,另外将已转染wt-p53基因的大肠癌细胞用5-FU进行诱导,Western印迹分析上述干预条件下细胞中p53蛋白及细胞周期蛋白D1表达水平的变化;流式细胞术检测wt p53基因联合5-FU组及对照组中细胞凋亡的改变情况.结果表明,wt-p53基因能增加癌细胞中细胞周期蛋白D1的表达,与wt-p53基因呈剂量依赖性关系;5-FU则降低其蛋白表达,与5-FU呈时间和剂量依赖性关系,而5-FU所致的细胞周期蛋白D1表达水平的降低在细胞预先转染了wt- p53基因时会被抑制;wt-p53基因与5-FU联合使用能提高大肠癌细胞凋亡率.结果提示,wt-p53基因可提高大肠癌细胞中细胞周期蛋白D1的表达水平,并抑制5-FU所致的细胞周期蛋白D1降解,从而提高大肠癌细胞对化疗药物5-FU的敏感性.  相似文献   

20.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号