首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite a growing interest in gap junctions (GJs) of mammalian brain, their distribution and role in cell ensembles of thalamus remains unknown. The aim of this work was ultrastructural and immunoelectron study of glial GJs in ventral posteromedial (VPM) and posteromedial (POM) thalamic nuclei and thalamic reticular nucleus (RTN) of rats. GJs were identified by standard techniques of transmission electron microscopy and by pre-embedding immunohistochemistry protocol using anti-connexin-43 antibodies with Dako EnVision System + Peroxidase (DAB) detecting system. It was found that glial cells surround thalamocortical axons and axo-spiny synapses and form numerous elongated gap junction plaques located near chemical synapses. A single axon-spiny chemical synapse can be surrounded by several (up to 4) gap junctions that seem to form peculiar networks of glial cells united by GJs. Closely adjacent gap junctions disposed at an angle from 30° to 140° to each other were revealed. Immunoelectron labeling demonstrated that gap junction plaques located around chemical synapses have an astroglial origin. Despite the accumulation of osmiophilic material in the contact zone, ultrastructural signs of GJs were clearly identified. Due to the formation of intercellular glia-glial GJs astroglia may acquire a function of spatial buffer to regulate extracellular concentration of potassium and other ions, providing intracellular and extracellular ion homeostasis. We believe that astroglial processes joined into a network by GJs play a key role in the circulation of information and can modulate subcortical neuronal ensembles. We suggest that a close spatial location of astroglial GJs and asymmetrical chemical synapses is reflected in the functional organization of specific and nonspecific thalamic nuclei, which are the main centers of the afferent and efferent inputs of the cerebral cortex.  相似文献   

2.
Molecular mechanisms linking pre- and postsynaptic membranes at the interneuronal synapses are little known. We tested the cadherin adhesion system for its localization in synapses of mouse and chick brains. We found that two classes of cadherin-associated proteins, alpha N- and beta-catenin, are broadly distributed in adult brains, colocalizing with a synaptic marker, synaptophysin. At the ultrastructural level, these proteins were localized in synaptic junctions of various types, forming a symmetrical adhesion structure. These structures sharply bordered the transmitter release sites associated with synaptic vesicles, although their segregation was less clear in certain types of synapses. N-cadherin was also localized at a similar site of synaptic junctions but in restricted brain nuclei. In developing synapses, the catenin-bearing contacts dominated their junctional structures. These findings demonstrate that interneuronal synaptic junctions comprise two subdomains, transmitter release zone and catenin-based adherens junction. The catenins localized in these junctions are likely associated with certain cadherin molecules including N-cadherin, and the cadherin/ catenin complex may play a critical role in the formation or maintenance of synaptic junctions.  相似文献   

3.
Analysis of evoked potentials and unit activity in the visual cortical projection area of rabbits revealed a definite succession of forming of interneuronal connections in ontogeny. In early postnatal period, the neuronal reactions were characterized by stable responses with one excitatory phase corresponding to initially negative surface evoked potential. Similarity of reactions of neurones situated in the same vertical column was observed and explained by functioning of a system of rigid connections of the thalamic relay nuclei afferents with cortical pyramidal neurones. Beginning from the third week of postnatal life of rabbits the neuronal reactions assumed a distinctly expressed phasic character, and variability of responses was seen along the vertical line. The changes revealed correlated with formation of a system of interneurones providing a possibility of plastic neuronal interaction. A study of the influence of preliminary cortical stimulation of the associative areas showed that intercentral cooperation mediated by cortical interneurones providing a systemic analysis of visual information began to form from the third week of postnatal life and reached the definitive level at later stages of development.  相似文献   

4.
Calmodulin and other calcium-modulated proteins bind in vitro to purified junctional polypeptides from rat liver gap junctions, bovine lens fiber junctions, a chymotryptic fragment from bovine lens junctions, and crayfish hepatopancreas gap junctions. The potential biological relevance of the interaction of calmodulin with junctional proteins is suggested by immunocytochemical localization of endogenous calmodulin in cortical regions of the cell where gap junctions exist. These observations provide a molecular basis for understanding the potential regulatory role of calmodulin on cell-cell communication channels in vivo. In addition, the calmodulin binding represents the first molecular homology that has been found for junctional channel proteins from mammalian and arthropod tissues.  相似文献   

5.
6.
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1?%) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.  相似文献   

7.
Gap junctions between cells are ubiquitously expressed in the developing brain. They are involved in major steps of neocortical development, including neurogenesis, cell migration, synaptogenesis, and neural circuit formation, and have been implicated in cortical column formation. Dysfunctional gap junctions can contribute to or even cause a variety of brain diseases. Although the role of gap junctions in neocortical development is better known, a comprehensive understanding of their functions is far from complete. Here we explore several critical open questions surrounding gap junctions and their involvement in neural circuit development. Addressing them will greatly impact our understanding of the fundamental mechanisms of neocortical structure and function as well as the etiology of brain disease.  相似文献   

8.
In a wide range of studies, the emergence of orientation selectivity in primary visual cortex has been attributed to a complex interaction between feed-forward thalamic input and inhibitory mechanisms at the level of cortex. Although it is well known that layer 4 cortical neurons are highly sensitive to the timing of thalamic inputs, the role of the stimulus-driven timing of thalamic inputs in cortical orientation selectivity is not well understood. Here we show that the synchronization of thalamic firing contributes directly to the orientation tuned responses of primary visual cortex in a way that optimizes the stimulus information per cortical spike. From the recorded responses of geniculate X-cells in the anesthetized cat, we synthesized thalamic sub-populations that would likely serve as the synaptic input to a common layer 4 cortical neuron based on anatomical constraints. We used this synchronized input as the driving input to an integrate-and-fire model of cortical responses and demonstrated that the tuning properties match closely to those measured in primary visual cortex. By modulating the overall level of synchronization at the preferred orientation, we show that efficiency of information transmission in the cortex is maximized for levels of synchronization which match those reported in thalamic recordings in response to naturalistic stimuli, a property which is relatively invariant to the orientation tuning width. These findings indicate evidence for a more prominent role of the feed-forward thalamic input in cortical feature selectivity based on thalamic synchronization.  相似文献   

9.
MC Schmid  W Singer  P Fries 《Neuron》2012,75(4):551-552
Higher-order thalamic nuclei, like the pulvinar, have extensive connections with cortex, suggesting a role in?the coordination of cortical communication. A recent study in Science by Saalmann et?al. (2012) implicates the pulvinar in promoting cortical alpha-band synchronization that subserves communication of attended information.  相似文献   

10.
The investigation has demonstrated that in the cat the nucleus caudatus and the putamen are projected on the cortex and thalamic nuclei of the ipsilateral hemisphere according to a certain topical principle characterized by both similarity in localization of projections of these two structures of the neostriatum and their difference. On the one hand, to the same fields of the cortex and the thalamic nuclei fibres from both structures of the neostriatum go, and on the other hand--a number of cortical zones and thalamic nuclei get projections either from the nucleus caudatus or from the putamen only. Owing to a certain organization of the connections studied, it is possible to consider them as the base of functional heterogeneity of the basal ganglia. Over-lapping of the cortical and thalamic projections of the nucleus caudatus and the putamen might explain common striatal effects on behavioral reactions.  相似文献   

11.
In the behaving cat, motion expectancy of an event to occur (for a prey to appear) is accompanied by the development of 14 Hz electrocortical mu rhythms in the hand subarea of cortical somatic area SI. Our first aim here was to identify subcortical sites projecting to this cortical mu focus, using localised retrograde HRP marking. The only site thus labelled was the thalamic zone well known to project to the cortical mu area, and to act as a generator for the mu rhythms (ventral posterior nucleus, VP); no other deep structure could be identified, that could have been considered as a putative zone for control of cortical mu. We then injected minute amounts of HRP into the thalamic mu zone; labelled neurones were located (apart from those expected in the relays of the somatic pathway) in locus coeruleus (bilaterally) and ipsilaterally in the thalamic nuclei anteroventralis and laterodorsalis. In brief then, it seems that the regulation of the VP-SI mu channel (that we could previously demonstrate), by other deep structures is exerted upon the thalamic side.  相似文献   

12.
Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed.  相似文献   

13.
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.  相似文献   

14.
Involvement of gap junctions in the development of the neocortex   总被引:6,自引:0,他引:6  
Gap junctions play an important role during the development of the mammalian brain. In the neocortex, gap junctions are already expressed at very early stages of development and they seem to be involved in many processes like neurogenesis, migration and synapse formation. Gap junctions are found in all cell types including progenitor cells, glial cells and neurons. These direct cell-to-cell connections form clusters consisting of a distinct number of cells of a certain type. These clusters can be considered as communication compartments in which the information transfer is mediated electrically by ionic currents and/or chemically by, e.g., small second messenger molecules. Within the neocortex, four such communication compartments can be identified: (1) gap junction-coupled neuroblasts of the ventricular zone and gap junctions in migrating cells and radial glia, (2) gap junction-coupled glial cells (astrocytes and oligodendrocytes), (3) gap junction-coupled pyramidal cells (only during the first two postnatal weeks) and (4) gap junction-coupled inhibitory interneurons. These compartments can consist of sub-compartments and they may overlap to some degree. The compartments 1 and 3 disappear with ongoing develop, whereas compartments 2 and 4 persist in the mature neocortex. Gap junction-mediated coupling of glial cells seems to be important for stabilization of the extracellular ion homeostasis, uptake of neurotransmitters, migration of neurons and myelination of axons. Electrical synapses between inhibitory interneurons facilitate the synchronization of pyramidal cells. In this way, they contribute to the generation of oscillatory network activity correlated with higher cortical functions. The role of gap junctions present in neuroblasts of the ventricular zone as well as the role of gap junctions found in pyramidal cells during the early postnatal stages is less clear. It is assumed that they might help to form precursors of the functional columns observed in the mature neocortex. Although recent developments of new techniques led to the solution of many problems concerning gap junction-coupling between neurons and glial cells in the neocortex, there are many open questions which need to be answered before we can achieve a comprehensive understanding of the role of gap junctions in the development of the neocortex.  相似文献   

15.
Thin-section and freeze-fracture data retrieved from developing fetal adrenals of mouse, rabbit, and rat reveal that gap junctions which appear as cortical and medullary cells morphogenetically assort themselves. In the presumptive zona fasciculata and reticularis communicating junctions develop between neighboring cells just prior to the onset of steroidogenesis. In the rodents, gap junctions assemble in large, particle-free formation plaques 1 day before the proliferation of smooth endoplasmic reticulum and the vesiculation of mitochondria (morphological features which are indicative of steroidogenesis). Similar observations have been obtained in fetal rabbits, but here gap junctions apparently develop in the absence of formation plaques. In each species, gap junctions apparently develop 1 or 2 days prior to a surge in corticosteroid production, suggesting that the formation of communicating junctions during the early phases of adrenal cortical differentiation may provide an avenue to coordinate steroidogenesis in the developing fetal cortex.  相似文献   

16.
Summary Using freeze-fracture techniques, we have investigated membrane specializations of the glia associated with the hypothalamo-neurohypophysial system of the rat. In the paraventricular (PVN) and supraoptic (SON) nuclei, astrocytes in areas of high neuronal density (i.e., magnocellular regions) display orthogonal arrays of 6–7 nm particles soley near gap junctions, while astrocytes in areas of lower neuronal density (i.e., parvocellular regions) contain additional arrays in membranes not displaying gap junctions. Arrays are especially numerous on astrocytic perivascular end-feet in both nuclei and in the laminations of the pial-glial limitans ventral to the SON. Ependymal cells near the PVN show arrays both on their lateral surfaces (displaying gap junctions) and on their apical surfaces (facing the CSF). Tight junctions are not noted on astrocytes or ependymal cells, but are noted on both the somas and myelin lamellae of oligodendroglia. Both of these latter membranes occasionally contain gap junctions as well; however, orthogonal arrays are never noted on oligodendroglia.The plasma membranes of pituicytes in the neurohypophysis display gap junctions, complex junctions, and tight junctions. Orthogonal arrays are noted near the first two of these, but not near the last. Arrays in the neural lobe appear most dense on membranes adjacent to subpial or perivascular spaces. Pituicyte membranes containing orthogonal arrays appear infrequently near the neural stalk, increasing towards the distal end of the neural lobe. The distribution of orthogonal arrays in this system, as well as in other systems in which they have been noted, suggests a polarization of membrane activity.  相似文献   

17.
Gap junctions are prevalent in every nervous system, but their role in information processing remains largely unknown. In C. elegans, the role of gap junctional communication in touch sensitivity has been demonstrated. In this animal, the entire complement of gap junctions in the nervous system is documented, therefore providing a good model for the computational investigation of circuit functions of gap junctions.We explored several hypotheses about the role of gap junctions in the nervous system of C. elegans by systematically analysing an anatomical database with recursive algorithms. We find that gap junctions connect different sets of neurons from those connected by chemical synapses. In addition, when analysing the topology of the gap-junction networks, we find that, surprisingly, most (92%) neurons in the worm are linked in a single gap-junction network. The worm nervous system can only be divided into smaller networks by assuming that two or more gap junctions are necessary for functional coupling or that neural activity has limited propagation. However, these groups, and others identified using algorithms with subsets or combinations of restrictive criteria, do not correspond to any known circuits identified in genetic and behavioral studies. Finally, we notice that the function of some gap junctions appears linked to their precise location on the neuronal processes. We propose that the location of the gap junctions within the neuron determines their functional role.  相似文献   

18.
In addition to the well-characterized surface gap junctions expressed at contact sites between cells, annular gap junction profiles have been localized within the cytoplasm of some cell populations. To study and characterize these annular profiles, gap junction protein type was demonstrated with Western blot and immunocytochemistry. The distribution of annular gap junctions and the relationships to cytoskeletal elements were demonstrated with immunocytochemical, transmission electron microscopic, or image analysis with confocal microscopy techniques. SW-13 adrenal cortical tumor cells expressed α1gap junctions at areas of cell to cell contact. In addition, α1gap junction annular profiles were seen within the cytoplasm. Actin and myosin II were found closely associated with these annular gap junctions, while no physical association between tubulin- or vimentin-containing fibers and gap junction protein could be established. Disruption of microfilaments with cytochalasin B treatment (10 μg/ml, 1 h) resulted in a decrease in the average number and an increase in the average size of annular gap junctions compared to control populations. The results are consistent with a role for cytoskeletal elements containing actin and myosin II in annular gap junction turnover.  相似文献   

19.
Peculiarities of ultrastructural organization and localization of early forms of avascular nonsynaptic types of junctions formed in 14-18-day-old rat embryos have been studied; cerebral structures different in their phylogenic relations (the sensomotor cortex and nucleus caudatus) are taken as an example. Five main types of nonsynaptic intercellular junctions have been revealed: desmosome-like, gap, symmetric, asymmetric and mixed junctions. They differ by their ultrastructural organization. These types of junctions make the main types of contacts: soma-somatic, dendro-somatic, dendro-dendritic, axo-somatic, axo-dendritic. Desmosomes form the greatest number of the contacts. The earliest and the most primitive are gap junctions; they, evidently, reflect functional activity of desmosome-like junctions. The mixed junctions, perhaps, reflect the developmental stages of the intercellular contacts of transition from one type of junctions into another. Localization peculiarities of the nonsynaptic intercellular contacts are demonstrated: glomerule-like formations, establishment of numerous contacts looking like a successive chain, and so on. For some other indices a longer period of intercellular contact formation in the nucleus caudatus is noted, comparing the sensomotor cortex, though the latter is a newer structural cerebral formation from the phylogenic point of view.  相似文献   

20.
Recent experiments in the developing mammalian visual cortex have revealed that gap junctions couple excitatory cells and potentially influence the formation of chemical synapses. In particular, cells that were coupled by a gap junction during development tend to share an orientation preference and are preferentially coupled by a chemical synapse in the adult cortex, a property that is diminished when gap junctions are blocked. In this work, we construct a simplified model of the developing mouse visual cortex including spike-timing-dependent plasticity of both the feedforward synaptic inputs and recurrent cortical synapses. We use this model to show that synchrony among gap-junction-coupled cells underlies their preference to form strong recurrent synapses and develop similar orientation preference; this effect decreases with an increase in coupling density. Additionally, we demonstrate that gap-junction coupling works, together with the relative timing of synaptic development of the feedforward and recurrent synapses, to determine the resulting cortical map of orientation preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号