首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人源FGF-21在脂肪细胞糖代谢中的作用   总被引:1,自引:0,他引:1  
近年来研究发现,成纤维细胞生长因子(FGF)-21是一种新的代谢调节因子.为了深入研究人源FGF-21(hFGF-21)的生物活性,本实验利用SUMO高效表达载体,高效表达成熟的hFGF-21,并利用小鼠3T3-L1脂肪细胞检测hFGF-21的糖代谢活性.实验结果表明,hFGF-21可促进脂肪细胞的葡萄糖吸收,且葡萄糖吸收效率呈剂量依赖性.hFGF-21作用4 h即可促进脂肪细胞糖吸收,其活性可持续24 h以上.hFGF-21与胰岛素共同作用的葡萄糖吸收效果,明显优于它们的单独作用结果,说明hFGF-21与胰岛素发挥协同作用.脂肪细胞经hFGF-21预处理后,显著增加了胰岛素促进脂肪细胞吸收葡萄糖的效率,说明hFGF-21可以增加胰岛素的敏感性.本实验为临床应用hFGF-21治疗糖尿病,增加胰岛素敏感性提供了依据.  相似文献   

2.
Myosin II (MyoII) is required for insulin-responsive glucose transporter 4 (GLUT4)-mediated glucose uptake in 3T3-L1 adipocytes. Our previous studies have shown that insulin signaling stimulates phosphorylation of the regulatory light chain (RLC) of MyoIIA via myosin light chain kinase (MLCK). The experiments described here delineate upstream regulators of MLCK during insulin-stimulated glucose uptake. Since 3T3-L1 adipocytes express two MyoII isoforms, we wanted to determine which isoform was required for insulin-stimulated glucose uptake. Using a siRNA approach, we demonstrate that a 60% decrease in MyoIIA protein expression resulted in a 40% inhibition of insulin-stimulated glucose uptake. We also show that insulin signaling stimulates the phosphorylation of MLCK. We further show that MLCK can be activated by calcium as well as signaling pathways. We demonstrate that adipocytes treated with the calcium chelating agent, 1,2-b (iso-aminophenoxy) ethane-N,N,N'',N''-tetra acetic acid, (BAPTA) (in the presence of insulin) impaired the insulin-induced phosphorylation of MLCK by 52% and the RLC of MyoIIA by 45% as well as impairing the recruitment of MyoIIA to the plasma membrane when compared to cells treated with insulin alone. We further show that the calcium ionophore, A23187 alone stimulated the phosphorylation of MLCK and the RLC associated with MyoIIA to the same extent as insulin. To identify signaling pathways that might regulate MLCK, we examined ERK and CaMKII. Inhibition of ERK2 impaired phosphorylation of MLCK and insulin-stimulated glucose uptake. In contrast, while inhibition of CaMKII did inhibit phosphorylation of the RLC associated with MyoIIA, inhibition of CAMKIIδ did not impair MLCK phosphorylation or translocation to the plasma membrane or glucose uptake. Collectively, our results are the first to delineate a role for calcium and ERK in the activation of MLCK and thus MyoIIA during insulin-stimulated glucose uptake in 3T3-L1 adipocytes.  相似文献   

3.
目的:探讨辣椒碱对3T3-L1前脂肪细胞葡萄糖摄取的影响。方法:不同浓度的辣椒碱作用于3T3-L1前脂肪细胞,采用MTT测定细胞活性,GLU Test试剂盒法测定葡萄糖摄取,Western Blot法检测葡萄糖转运蛋白1(GLUT-1)表达的变化。结果:25μM辣椒碱作用72 h和50μM、100μM辣椒碱作用48 h、72 h,可显著抑制3T3-L1细胞增殖,6.25、12.5、25μM辣椒碱作用可显著促进3T3-L1细胞的葡萄糖摄入,Western Blot结果显示辣椒碱能够显著增加GLUT1蛋白表达量,差异均具有统计学意义(P0.05)。结论:低剂量辣椒碱具有降糖作用,其作用机制可能与增加GLUT-1蛋白表达有关。  相似文献   

4.
In 3T3-L1 adipocytes, both insulin and endothelin 1 stimulate glucose transport via translocation of the GLUT4 glucose carrier from an intracellular compartment to the cell surface. Yet it remains uncertain as to whether both hormones utilize identical pathways and to what extent each depends on the heterotrimeric G protein Galphaq as an intermediary signaling molecule. In this study, we used a novel inducible system to rapidly and synchronously activate expression of a dominant inhibitory form of ADP-ribosylation factor 6, ARF6(T27N), in 3T3-L1 adipocytes and assessed its effects on insulin- and endothelin-stimulated hexose uptake. Expression of ARF6(T27N) in 3T3-L1 adipocytes was without effect on the ability of insulin to stimulate either 2-deoxyglucose uptake or the translocation of GLUT4 or GLUT1 to the plasma membrane. However, the same ARF6 inhibitory mutant blocked the stimulation of hexose uptake and GLUT4 translocation in response to either endothelin 1 or an activated form of Galphaq, Galphaq(Q209L). These results suggest that endothelin stimulates glucose transport through a pathway that is distinct from that utilized by insulin but is likely to depend on both a heterotrimeric G protein from the Gq family and the small G protein ARF6. These data are consistent with the interpretation that endothelin and insulin stimulate functionally different pools of glucose transporters to be redistributed to the plasma membrane.  相似文献   

5.
目的:构建携带小鼠脂联素(Acrp30)siRNA腺病毒载体,并检测其对小鼠脂肪细胞Acrp30表达以及对3T3-L1脂肪细胞基础葡萄糖转运的影响。方法:设计并化学合成小鼠脂肪细胞Acrp30 siRNA片断,将其亚克隆入AdEaxy XL腺病毒载体系统,在293细胞内包装扩增为重组腺病毒。用此重组腺病毒感染3T3-L1脂肪细胞,用RT-PCR和ELISA检测其Acrp30 mRNA和蛋白表达。采用2 Deoxy-[3H]D-glucose掺入法测定脂肪细胞葡萄糖转运。结果:设计并构建了小鼠Acrp30基因特异性siRNA腺病毒载体,该载体感染脂肪细胞后,能显著抑制Acrp30 mRNA和蛋白表达,影响3T3-L1脂肪细胞基础葡萄糖的转运,与对照组相比,差异有显著性意义(P<0.05)。结论:构建的Acrp30基因特异性siRNA腺病毒载体能有效的抑制脂联素在3T3-L1脂肪细胞中的表达,从而影响3T3-L1脂肪细胞基础葡萄糖转运。  相似文献   

6.
孟凡萍  郝坡  王长本  李良琼 《生物磁学》2011,(23):4412-4416
目的:构建携带小鼠脂联素(Acrp30)siRNA腺病毒载体,并检测其对小鼠脂肪细胞Acrp30表达以及对3T3-L1脂肪细胞基础葡萄糖转运的影响。方法:设计并化学合成小鼠脂肪细胞Acrp30 siRNA片断,将其亚克隆入AdEaxy XL腺病毒载体系统,在293细胞内包装扩增为重组腺病毒。用此重组腺病毒感染3T3-L1脂肪细胞,用RT-PCR和ELISA检测其Acrp30 mRNA和蛋白表达。采用2Deoxy-[3H]D—glucose掺入法测定脂肪细胞葡萄糖转运。结果:设计并构建了小鼠Acrp30基因特异性siRNA腺病毒载体,该载体感染脂肪细胞后,能显著抑制Acrp30 mRNA和蛋白表达,影响3T3-L1脂肪细胞基础葡萄糖的转运,与对照组相比,差异有显著性意5C(P〈0.05)。结论:构建的Acrp30基因特异性siRNA腺病毒载体能有效的抑制脂联素在3T3-L1脂肪细胞中的表达,从而影响3T3-L1脂肪细胞基础葡萄糖转运。  相似文献   

7.
ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptake, lipid droplet size, or tri-, di-, or monoacylglycerol levels when compared with a control adipocyte line. However, ACSL1 kd adipocytes displayed a 7-fold increase in basal and a ∼15% increase in forskolin-stimulated fatty acid efflux without any change in glycerol release, indicating a role for the protein in fatty acid reesterification following lipolysis. Consistent with this proposition, ACSL1 kd cells exhibited a decrease in activation and phosphorylation of AMP-activated protein kinase and its primary substrate acetyl-CoA carboxylase. Moreover, ACSL1 kd adipocytes displayed an increase in phosphorylated protein kinase Cθ and phosphorylated JNK, attenuated insulin signaling, and a decrease in insulin-stimulated glucose uptake. These findings identify a primary role of ACSL1 in adipocytes not in control of lipid influx, as previously considered, but in lipid efflux and fatty acid-induced insulin resistance.Fatty acid influx and efflux mechanisms and their regulation affect lipid storage and metabolism in adipocytes. Imbalances in adipose lipid metabolism have been shown to significantly contribute to the development of obesity and associated metabolic diseases, such as type 2 diabetes, hypertension, and cardiovascular disease (13). Although the molecular mechanisms involved in fatty acid efflux are still undefined, several proteins implicated in fatty acid influx have been proposed: CD36 (fatty acid translocase), acyl-CoA synthetases (fatty acid transport protein (FATP)2 and acyl-CoA synthetase (ACSL) family members), plasma membrane fatty acid-binding protein, and caveolin-1 (49).FATPs and long-chain ACSLs are membrane-bound enzymes that catalyze the ATP-dependent esterification of long chain (ACSL) and very long-chain (FATP) fatty acids to their acyl-CoA derivatives (10, 11). Both types of CoA synthetases have common ATP/AMP binding and fatty acid binding signature motifs. In mammals, six different isoforms of FATP (FATP1–FATP6) and five different isoforms of ACSL (ACSL1, -3, -4, -5, and -6) have been identified with tissue-specific expression patterns (12). White adipose tissue predominantly express FATP1, FATP4, and ACSL1, whereas brown adipose tissue in addition expresses ACSL5. Our recent results have confirmed a major role of FATP1 and CD36, but not FATP4, in insulin-stimulated LCFA uptake in 3T3-L1 adipocytes (6).ACSL1 is a ∼78-kDa intrinsic membrane protein localized to multiple sites in a variety of different cells. In liver, ACSL1 has been shown to be localized to the endoplasmic reticulum and mitochondria-associated membranes, whereas in adipocytes, ACSL1 was also found associated with the plasma membrane, the lipid droplet surface (13), and glucose transporter 4-containing vesicles (14, 15). Recent studies have postulated a cooperative role of FATP1 and ACSL1 in the movement of LCFAs across the plasma membrane via a process termed vectoral acylation (16), in which the CoA- and ATP-dependent esterification of internalized fatty acid provides the thermodynamic force necessary for net lipid influx. Evidence supporting this hypothesis came from a functional cloning strategy that identified mouse ACSL1 along with FATP1 as proteins involved in LCFA transport (17). In contrast to the role of ACSL1 in LCFA uptake and triglyceride synthesis in adipocytes, overexpression of ACSL1 in rat primary hepatocytes channeled fatty acids toward diacylglycerol and phospholipids synthesis and increased reacylation of hydrolyzed fatty acids into triglyceride (18).Since lipid flux is defined by the location and activity of its regulatory enzymes and proteins, overexpression strategies can result in changes in metabolism potentially distinct from the endogenous function. To that end, our laboratory has recently undertaken a gene silencing approach to the evaluation of proteins implicated in adipocyte fatty acid influx and efflux, and prior studies have focused on FATP1, FATP4, and CD36 (6). In this report, we evaluated the adipose-specific role(s) of ACSL1 using stable gene-silencing strategies in 3T3-L1 adipocytes using lentiviral delivery of shRNA. We report herein that, contrary to previous reports, in 3T3-L1 adipocytes, ACSL1 does not facilitate the basal or insulin-stimulated component of LCFA uptake. ACSL1 is, however, involved in the reesterification of hydrolyzed fatty acids released during basal and forskolin-stimulated lipolysis, thereby regulating their availability and efflux from the cell. Additionally, fatty acid reesterification by ACSL1 during lipolysis plays a major role in regulating the AMP-activated protein kinase (AMPK) as well as the PKCθ and JNK pathways leading to insulin resistance. Such findings bring to light a new interpretation of the role of ACSL1 and other acyl-CoA synthetases in the control of intermediary metabolism and lipid-mediated signal transduction.  相似文献   

8.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCζ and PKCλ) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKCλ in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKCλ (λKD or λΔNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKCλ, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by λKD or λΔNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKCλ was ~50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKCλ mutant that lacks the pseudosubstrate domain (λΔPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of λΔPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKCλ. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKCλ pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

9.

Background

TC10 is a small GTPase found in lipid raft microdomains of adipocytes. The protein undergoes activation in response to insulin, and plays a key role in the regulation of glucose uptake by the hormone.

Methodology/Principal Findings

TC10 requires high concentrations of magnesium in order to stabilize guanine nucleotide binding. Kinetic analysis of this process revealed that magnesium acutely decreased the nucleotide release and exchange rates of TC10, suggesting that the G protein may behave as a rapidly exchanging, and therefore active protein in vivo. However, in adipocytes, the activity of TC10 is not constitutive, indicating that mechanisms must exist to maintain the G protein in a low activity state in untreated cells. Thus, we searched for proteins that might bind to and stabilize TC10 in the inactive state. We found that Caveolin interacts with TC10 only when GDP-bound and stabilizes GDP binding. Moreover, knockdown of Caveolin 1 in 3T3-L1 adipocytes increased the basal activity state of TC10.

Conclusions/Significance

Together these data suggest that TC10 is intrinsically active in vivo, but is maintained in the inactive state by binding to Caveolin 1 in 3T3-L1 adipocytes under basal conditions, permitting its activation by insulin.  相似文献   

10.

Background

Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear.

Methodology/Principal Findings

This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects.

Conclusions/Significance

The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism.  相似文献   

11.
Environmental endocrine disruptors (EDCs), including bisphenol-A (BPA), have been recently involved in obesity and diabetes by dysregulating adipose tissue function. Our aim was to examine whether prolonged exposure to low doses of BPA could affect adipogenesis and adipocyte metabolic functions. Therefore, 3T3-L1 pre-adipocytes were cultured for three weeks with BPA 1nM to mimic human environmental exposure. We evaluated BPA effect on cell proliferation, differentiation, gene expression and adipocyte metabolic function. BPA significantly increased pre-adipocyte proliferation (p<0.01). In 3T3-L1 adipocytes differentiated in the presence of BPA, the expression of Peroxisome proliferator-activated receptor gamma (PPARγ), Fatty Acid Binding Protein 4/Adipocyte Protein 2 (FABP4/AP2) and CCAAT/enhancer binding protein (C/EBPα) was increased by 3.5, 1.5 and 3 folds, respectively. Mature adipocytes also showed a significant increase in lipid accumulation (p<0.05) and alterations of insulin action, with significant reduction in insulin-stimulated glucose utilization (p<0.001). Moreover, in mature adipocytes, mRNA levels of Leptin, interleukin-6 (IL6) and interferon-γ (IFNγ) were significantly increased (p<0.05). In conclusion, BPA prolonged exposure at low doses, consistent with those found in the environment, may affect adipocyte differentiation program, enhancing pre-adipocyte proliferation and anticipating the expression of the master genes involved in lipid/glucose metabolism. The resulting adipocytes are hypertrophic, with impaired insulin signaling, reduced glucose utilization and increased pro-inflammatory cytokine expression. Thus, these data supported the hypothesis that BPA exposure, during critical stages of adipose tissue development, may cause adipocyte metabolic dysfunction and inflammation, thereby increasing the risk of developing obesity-related diseases.  相似文献   

12.
13.
The antioxidant activity of mitochondria-targeted small molecules, SkQ1 and MitoQ (conjugates of a lipophilic decyltriphenylphosphonium cation with an antioxidant moiety of a plastoquinone and ubiquinone, respectively), was studied in aqueous solution and in a lipid environment, i.e., micelles, liposomes and planar bilayer lipid membranes. Reactive oxygen species (ROS) were generated by azo initiators or ferrous ions with or without tert-butyl-hydroperoxide (t-BOOH). Chemiluminescence, fluorescence, oxygen consumption and inactivation of gramicidin peptide channels were measured to detect antioxidant activity. In all of the systems studied, SkQ1 was shown to effectively scavenge ROS. The scavenging was inherent to the reduced form of the quinone (SkQ1H(2)). In the majority of the above model systems, SkQ1 exhibited higher antioxidant activity than MitoQ. It is concluded that SkQ1H(2) operates as a ROS scavenger in both aqueous and lipid environments, being effective at preventing ROS-induced damage to membrane lipids as well as membrane-embedded peptides.  相似文献   

14.
Since insulin resistance can lead to hyperglycemia, improving glucose uptake into target tissues is critical for regulating blood glucose levels. Among the free fatty acid receptor (FFAR) family of G protein-coupled receptors, GPR41 is known to be the Gαi/o-coupled receptor for short-chain fatty acids (SCFAs) such as propionic acid (C3) and valeric acid (C5). This study aimed to investigate the role of GPR41 in modulating basal and insulin-stimulated glucose uptake in insulin-sensitive cells including adipocytes and skeletal muscle cells. Expression of GPR41 mRNA and protein was increased with maximal expression at differentiation day 8 for 3T3-L1 adipocytes and day 6 for C2C12 myotubes. GPR41 protein was also expressed in adipose tissues and skeletal muscle. After analyzing dose-response relationship, 300 µM propionic acid or 500 µM valeric acid for 30 min incubation was used for the measurement of glucose uptake. Both propionic acid and valeric acid increased insulin-stimulated glucose uptake in 3T3-L1 adipocyte, which did not occur in cells transfected with siRNA for GPR41 (siGPR41). In C2C12 myotubes, these SCFAs increased basal glucose uptake, but did not potentiate insulin-stimulated glucose uptake, and siGPR41 treatment reduced valerate-stimulated basal glucose uptake. Therefore, these findings indicate that GPR41 plays a role in insulin responsiveness enhanced by both propionic and valeric acids on glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes, and in valerate-induced increase in basal glucose uptake in C2C12 myotubes.  相似文献   

15.
目的:研究下调围脂滴蛋白基因(PLIN1)表达对3T3-L1细胞脂解的影响。方法:采用RNA干扰技术,构建3组阳性及1组阴性sh-PLIN1重组载体,并进行菌液PCR和DNA测序鉴定。Western blot测定PLIN1A蛋白表达,评价载体下调效果。细胞转染有效载体2天后,Bodipy 493/503染色脂滴;酶学方法测定细胞中甘油三酯和甘油含量;Western blot检测甘油三酯脂肪酶(ATGL)、激素敏感性脂肪酶(HSL)及其磷酸化蛋白(p-HSL)的表达。酶联免疫吸附法(ELISA)测定细胞中环磷酸腺苷(c AMP)和蛋白激酶A(PKA)的浓度。结果:各sh-PLIN1干扰载体构建成功,且3组阳性载体均能显著下调PLIN1A蛋白的表达(P0.05)。转染有效载体后,与阴性转染组相比,sh-PLIN1转染组细胞中脂滴减小,甘油三酯含量降低,甘油含量升高,ATGL和HSL相对表达量显著升高(P0.05),p-HSL相对表达量及c AMP、PKA的浓度无显著性差异(P0.05)。结论:下调PLIN1基因表达可加快3T3-L1细胞脂解速率,其可能通过上调ATGL和HSL的表达而实现,c AMP/PKA信号通路对其无明显调节作用。  相似文献   

16.

Background

Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood.

Objective

As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes.

Methods and Results

The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished.

Conclusions

Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.  相似文献   

17.
Adipocytes behave as a rich source of adipokines, which may be the link between obesity and its complications. Endoplasmic reticulum (ER) stress in adipocytes can modulate adipokines secretion. The aim of this study is to evaluate the effect of oxidized low density lipoprotein(ox-LDL)treatment on ER stress and adipokines secretion in differentiated adipocytes. 3T3-L1 pre-adipocytes were cultured and differentiated into mature adipocytes in vitro. Differentiated adipocytes were incubated with various concentrations of ox-LDL (0-100 µg/ml) for 48 hours; 50µg/ml ox-LDL for various times (0-48 hours) with or without tauroursodeoxycholic acid (TUDCA) (0-400µM) pre-treatment. The protein expressions of ER stress markers, glucose regulated protein 78(GRP78) and CCAAT/enhancer binding protein [C/EBP] homologous protein (CHOP) in adipocytes were detected by Western blot. The mRNA expressions of visfatin and resistin were measured by real-time PCR and the protein release of visfatin and resistin in supernatant were determined by ELISA. Treatment with ox-LDL could increase the cholesterol concentration in adipocytes. Ox-LDL induced the expressions of GRP78 and CHOP protein in adipocytes and promoted visfatin and resistin secretion in culture medium in dose and time-dependent manner. TUDCA could attenuate the effect of ox-LDL on GRP78 and CHOP expressions and reduce visfatin and resistin at mRNA and protein level in dose-dependent manner. In conclusion, ox-LDL promoted the expression and secretion of visfatin and resistin through its activation of ER stress, which may be related to the increase of cholesterol load in adipocytes.  相似文献   

18.
19.
Endothelin‐1 (ET‐1) has been demonstrated to induce insulin resistance (IR) and lipolysis, raising the possibility that ET‐1 may also contribute to the elevated fatty acid levels in IR‐associated comorbidities. We attempted to evaluate whether ET‐1 also affects the long‐chain fatty acid (LCFA) utilization in 3T3‐L1 adipocytes. The effects of chronic ET‐1 exposure on basal and insulin‐stimulated LCFA uptake, and LCFA uptake kinetics were examined in 3T3‐L1 adipocytes. Chronic exposure to ET‐1 induced IR and suppressed basal and insulin‐stimulated LCFA uptake. Given that insulin acutely stimulates LCFA uptake, there was dramatically similar trend of dose‐response curves for ET‐1‐suppressed LCFA uptake, and also similar corresponding IC50 values, between basal and insulin‐stimulated states, reflecting that ET‐1 predominantly suppresses basal LCFA uptake. Results of LCFA kinetics, western blots, and CD36 inhibition using sulfosuccinimidyl oleate (SSO) revealed that suppression of LCFA uptake by ET‐1 is associated with downregulation of CD36. ET type A receptor (ETAR) antagonist BQ‐610 reversed the IR induction and the ET‐1‐suppressed LCFA uptake. Exogenous replenishment of phosphatidylinositol (PI) 4, 5‐bisphosphate (PIP2) prevented IR induction, but not the suppression of LCFA uptake by ET‐1. Pharmacological inhibition of the activation of mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) completely blocked the ET‐1‐suppressed LCFA uptake. Serving as an inducer of IR, ET‐1 also chronically suppresses LCFA uptake via PIP2‐independent and ERK‐dependent pathway. The interplay between impaired glucose disposal and diminished LCFA utilization, induced by ET‐1, could worsen the dysregulation of adipose metabolism and energy homeostasis in insulin‐resistant states.  相似文献   

20.
Obesity promotes increased secretion of a number of inflammatory factors from adipose tissue. These factors include cytokines and very lately, extracellular matrix components (ECM). Biglycan, a small leucine rich proteoglycan ECM protein, is up-regulated in obesity and has recently been recognized as a pro-inflammatory molecule. However, it is unknown whether biglycan contributes to adipose tissue dysfunction. In the present study, we characterized biglycan expression in various adipose depots in wild-type mice fed a low fat diet (LFD) or obesity-inducing high fat diet (HFD). High fat feeding induced biglycan mRNA expression in multiple adipose depots. Adiponectin is an adipokine with anti-inflammatory and insulin sensitizing effects. Due to the importance of adiponectin, we examined the effect of biglycan on adiponectin expression. Comparison of adiponectin expression in biglycan knockout (bgn−/0) and wild-type (bgn+/0) reveals higher adiponectin mRNA and protein in epididymal white adipose tissue in bgn−/0 mice, as well higher serum concentration of adiponectin, and lower serum insulin concentration. On the contrary, knockdown of biglycan in 3T3-L1 adipocytes led to decreased expression and secretion of adiponectin. Furthermore, treatment of 3T3-L1 adipocytes with conditioned medium from biglycan treated macrophages resulted in an increase in adiponectin mRNA expression. These data suggest a link between biglycan and adiponectin expression. However, the difference in the pattern of regulation between in vivo and in vitro settings reveals the complexity of this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号