首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In photorespiration, peroxisomal glutamate:glyoxylate aminotransferase (GGAT) catalyzes the reaction of glutamate and glyoxylate to produce 2-oxoglutarate and glycine. Previous studies demonstrated that alanine aminotransferase-like protein functions as a photorespiratory GGAT. Photorespiratory transamination to glyoxylate, which is mediated by GGAT and serine glyoxylate aminotransferase (SGAT), is believed to play an important role in the biosynthesis and metabolism of major amino acids. To better understand its role in the regulation of amino acid levels, we produced 42 GGAT1 overexpression lines that express different levels of GGAT1 mRNA. The levels of free serine, glycine, and citrulline increased markedly in GGAT1 overexpression lines compared with levels in the wild type, and levels of these amino acids were strongly correlated with levels of GGAT1 mRNA and GGAT activity in the leaves. This accumulation began soon after exposure to light and was repressed under high levels of CO(2). Light and nutrient conditions both affected the amino acid profiles; supplementation with NH(4)NO(3) increased the levels of some amino acids compared with the controls. The results suggest that the photorespiratory aminotransferase reactions catalyzed by GGAT and SGAT are both important regulators of amino acid content.  相似文献   

2.
Serine: glyoxylate aminotransferase (EC 2.6.1.45) from rye seedlings catalysed transamination between L-serine and glyoxylate according to the Ping Pong Bi Bi mechanism with double substrate inhibition. As judged from the Km values, L-serine, L-alanine, and L-asparagine served as substrates for the enzyme with glyoxylate, whereas L-alanine and L-asparagine underwent transamination with hydroxypyruvate as acceptor. Pyridoxal phosphate (PLP) seems to be rather loosely bound to the enzyme protein. Aminooxyacetate and D-serine were found to be pure competitive inhibitors of the enzyme, with Ki values of 0.12 microM and 1.6 mM, respectively. Among the PLP inhibitors isonicotinic acid hydrazide and hydroxylamine were far less effective than aminooxyacetate (20% and 70% inhibition at 0.1 mM concentration, respectively). Inhibition by the SH group inhibitors at 1 mM concentration did not exceed 50%. L-Serine distinctly diminished the inhibitory effect of this type inhibitors. Preincubation of the enzyme with glyoxylate distinctly diminished transamination. Glyoxylate limited the inhibitory action of formaldehyde probably by competing for the reactive groups present in the active centre.  相似文献   

3.
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5'-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkably high with ethanol or acetate as carbon source (930 and 430 nmol/min per mg respectively). The transamination of glyoxylate is mainly catalysed by this enzyme in ethanol-grown cells. When glucose-grown cells were incubated in medium containing ethanol as sole carbon source, the activity markedly increased, and the increase was completely blocked by cycloheximide, suggesting that the enzyme is synthesized de novo during the incubation period. Similarity in the amino acid composition was observed, but immunological cross-reactivity was not observed among alanine: glyoxylate aminotransferases from yeast and vertebrate liver.  相似文献   

4.
1. The distribution of L-alanine:glyoxylate aminotransferase (AGT) activities were found in Suncus liver, 55% in particulate fraction and 45% in supernatant. 2. 65% of AGT activities in particulate were dependent on AGT isoenzyme 2 (AGT 2) having molecular weight 210,000, the remainder (35%) of AGT activities were dependent on AGT isoenzyme 1 (AGT 1) which have aminotransferase activity for serine. AGT activities in supernatant were dependent on AGT 1, AGT 2 and alanine:2-oxoglutarate aminotransferase (GPT), and their activity ratios were 10, 15 and 75%, respectively. 3. Km values for alanine were 0.52 mM; AGT 1, 3.3 mM; AGT 2, 0.88 mM; GPT measuring with AGT activity. AGT activity of GPT was inhibited by addition of glutamate and its Ki value was 1.8 mM. 4. Some other properties of AGT 1, AGT 2 and GPT are described.  相似文献   

5.
The photorespiratory enzyme L-serine:glyoxylate amino- transferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The f'mal enzyme was approximately 80 % pure as revealed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis. The molecular mass estimated by gel filtration chromato- graphy on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa, 42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum pH value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55 % of that observed with L-serine and glyoxylate. The lower Kmvalue (1.25 mM) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approxi- mately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 mM for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1:7 for the recombinant SGAT. Native SGAT showed a much lower Km value for L-alanine compared to the recombinant enzyme.  相似文献   

6.
Immunoblotting of human liver sonicates, after SDS-polyacrylamide gel electrophoresis, demonstrated the presence of a 40 kDa protein, corresponding to the subunit of alanine:glyoxylate aminotransferase, in six controls and three patients with primary hyperoxaluria type 1 (peroxisomal alanine:glyoxylate aminotransferase deficiency). This immunoreactive 40 kDa protein was absent in a further nine patients. Subcellular fractionation of patients' livers showed that the 40 kDa protein, when present, was located mainly in the peroxisomes. In a heterozygote liver, the 40 kDa protein was also mainly peroxisomal and paralleled the distribution of alanine:glyoxylate aminotransferase activity.  相似文献   

7.
Rat liver soluble fraction contained 3 forms of alanine: glyoxylate aminotransferase. One with a pI of 5.2 and an Mr of approx. 110,000 was found to be identical with cytosolic alanine:2-oxoglutarate aminotransferase. The pI 6.0 enzyme with an Mr of approx. 220,000 was suggested to be from broken mitochondrial alanine:glyoxylate aminotransferase 2 and the pI 8.0 enzyme with an Mr of approx. 80,000 enzyme from broken peroxisomal and mitochondrial alanine:glyoxylate aminotransferase 1. These results suggest that the cytosolic alanine: glyoxylate aminotransferase activity is due to cytosolic alanine: 2-oxoglutarate aminotransferase.  相似文献   

8.
In the photorespiratory process, peroxisomal glutamate:glyoxylate aminotransferase (GGAT) catalyzes the reaction of glutamate and glyoxylate to 2-oxoglutarate and glycine. Although GGAT has been assumed to play important roles for the transamination in photorespiratory carbon cycles, the gene encoding GGAT has not been identified. Here, we report that an alanine:2-oxoglutarate aminotransferase (AOAT)-like protein functions as GGAT in peroxisomes. Arabidopsis has four genes encoding AOAT-like proteins and two of them (namely AOAT1 and AOAT2) contain peroxisomal targeting signal 1 (PTS1). The expression analysis of mRNA encoding AOATs and EST information suggested that AOAT1 was the major protein in green leaves. When AOAT1 fused to green fluorescent protein (GFP) was expressed in BY-2 cells, it was found to be localized to peroxisomes depending on PTS1. By screening of Arabidopsis T-DNA insertion lines, an AOAT1 knockout line (aoat1-1) was isolated. The activity of GGAT and alanine:glyoxylate aminotransferase (AGAT) in the above-ground tissues of aoat1-1 was reduced drastically and, AOAT and glutamate:pyruvate aminotransferase (GPAT) activity also decreased. Peroxisomal GGAT was detected in the wild type but not in aoat1-1. The growth rate was repressed in aoat1-1 grown under high irradiation or without sugar, though differences were slight in aoat1-1 grown under low irradiation, high-CO2 (0.3%) or high-sugar (3% sucrose) conditions. These phenotypes resembled those of photorespiration-deficient mutants. Glutamate levels increased and serine levels decreased in aoat1-1 grown in normal air conditions. Based on these results, it was concluded that AOAT1 is targeted to peroxisomes, functions as a photorespiratory GGAT, plays a markedly important role for plant growth and the metabolism of amino acids.  相似文献   

9.
Alanine:glyoxylate aminotransferase was present as the apoenzyme in the peroxisomes and as the holoenzyme in the mitochondria in chick embryos. The peroxisomal enzyme predominated in the early stage and gradually decreased during embryonic development and disappeared after hatching. In contrast, the mitochondrial enzyme gradually increased and predominated in the later stage of chick embryos. Peroxisomal alanine:glyoxylate aminotransferase in chick embryos was a single peptide with a molecular weight of about 40,000. The enzyme differed from the mitochondrial enzyme in the embryos, and mammalian alanine:glyoxylate aminotransferases 1 (with a molecular weight of about 80,000 with two identical subunits) and 2 (with a molecular weight of about 200,000 with four identical subunits) in molecular weights and immunological properties. Mitochondrial alanine:glyoxylate aminotransferase in chick embryos had an identical molecular weight and immunologically cross-reacted with mammalian mitochondrial alanine:glyoxylate aminotransferase 2. Pyridoxal 5'-phosphate dissociated easily from the peroxisomal enzyme saturated with pyridoxal 5'-phosphate. Hepatic aspartate:2-oxoglutarate aminotransferase and alanine:2-oxoglutarate aminotransferase in chick embryos, and hepatic alanine:glyoxylate aminotransferases in different animal species were all present as the holoenzyme.  相似文献   

10.
11.
《FEBS letters》1986,201(1):20-34
Activities of alanine:glyoxylate aminotransferase in the livers of two patients with primary hyperoxaluria type I were substantially lower than those found in five control human livers. Detailed subcellular fractionation of one of the hyperoxaluric livers, compared with a control liver, showed that there was a complete absence of peroxisomal alanine:glyoxylate aminotransferase. This enzyme deficiency explains most of the biochemical characteristics of the disease and means that primary hyperoxaluria type I should be added to the rather select list of peroxisomal disorders.  相似文献   

12.
Glutamate:glyoxylate aminotransferase from green parts of 7-day-old rye seedlings was purified almost to homogeneity. Specific activity of the purified enzyme measured with L-glutamate and glyoxylate as substrates, was 46.1 units/mg. The enzyme activity with L-alanine and 2-oxoglutarate as substrates was higher by a factor of 1.5, whereas with L-alanine and glyoxylate or L-glutamate and pyruvate it was similar to that with L-glutamate and glyoxylate. L-Aspartate, L-arginine and L-ornithine could also serve as substrate. The reaction followed the Ping-Pong Bi Bi mechanism and Km values for L-glutamate and glyoxylate were 2.6 and 0.5 mM, respectively. Pyridoxal phosphate was found to be the coenzyme of glutamate-glyoxylate aminotransferase. This coenzyme was rather tightly bound with the enzyme protein, as the attempts at its complete resolution from the apoenzyme were unsuccessful. Pyridoxal phosphate, 2-mercaptoethanol and sucrose, or bovine serum albumin stabilized the enzyme. Molecular weight of glutamate:glyoxylate aminotransferase from rye seedlings, determined by SDS-polyacrylamide gel electrophoresis, was 58,800 +/- 2,100, whereas molecular sieving on Sephacryl S-200 gel gave values of 70,800 +/- 700 or 61,400. Similar values obtained for the denatured and nondenatured enzyme seem to indicate that it is a monomeric protein.  相似文献   

13.
L-Serine metabolism in rabbit, dog, and human livers was investigated, focusing on the relative contributions of the three pathways, one initiated by serine dehydratase, another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Under quasi-physiological in vitro conditions (1 mM L-serine and 0.25 mM pyruvate), flux through serine dehydratase accounted for only traces, and that through SPT/AGT substantially contributed no matter whether the enzyme was located in peroxisomes (rabbit and human) or largely in mitochondria (dog). As for flux through serine hydroxymethyltransferase and GCS, the conversion of serine to glycine occurred fairly rapidly, followed by GCS-mediated slow decarboxylation of the accumulated glycine. The flux through GCS was relatively high in the dog and low in the rabbit, and only in the dog was it comparable with that through SPT/AGT. An in vivo experiment with L-[3-3H,14C]serine as the substrate indicated that in rabbit liver, gluconeogenesis from L-serine proceeds mainly via hydroxypyruvate. Because an important role in the conversion of glyoxylate to glycine has been assigned to peroxisomal SPT/AGT from the studies on primary hyperoxaluria type 1, these results suggest that SPT/AGT in this organelle plays dual roles in the metabolism of glyoxylate and serine.  相似文献   

14.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo enzyme in the peroxisomes and as the holo enzyme in the mitochondria in chick (white leghorn) embryonic liver. However, surprisingly, birds were found to be classified into two groups on the basis of intraperoxisomal forms of liver alanine:glyoxylate aminotransferase. In the peroxisomes, the enzyme was present as the holo form in group 1 (pigeon, sparrow, Java sparrow, Australian budgerigar, canary, goose, and duck), and as the apo form in group 2 (white leghorn, bantam, pheasant, and Japanese mannikin). In the mitochondria, the enzyme was present as the holo form in both groups. The peroxisomal holo enzyme was purified from pigeon liver, and the peroxisomal apo enzyme from chicken (white leghorn) liver. The pigeon holo enzyme was composed of two identical subunits with a molecular weight of about 45,000, whereas the chicken apo enzyme was a single peptide with the same molecular weight as the subunit of the pigeon enzyme. The peroxisomal holo enzyme of pigeon liver was not immunologically cross-reactive with the peroxisomal apo enzyme of chicken liver, the mitochondrial holo enzymes from pigeon and chicken liver, and mammalian alanine:glyoxylate aminotransferases 1 and 2. The mitochondrial holo enzymes from both pigeon and chicken liver had molecular weights of about 200,000 with four identical subunits and were cross-reactive with mammalian alanine:glyoxylate aminotransferase 2 but not with mammalian alanine:glyoxylate aminotransferase 1.  相似文献   

15.
A novel alanine:glyoxylate aminotransferase was found in a hyperthermophilic archaeon, Thermococcus litoralis. The amino acid sequence of the enzyme did not show a similarity to any alanine:glyoxylate aminotransferases reported so far. Homologues of the enzyme appear to be present in almost all hyperthermophilic archaea whose whole genomes have been sequenced.  相似文献   

16.
17.
When provided with glycollate, peroxisomal extracts of leaves of spinach beet (Beta vulgaris L. cv.) converted L-serine and L-glutamate to hydroxypyruvate and 2-oxoglutarate respectively. When approximately saturating concentrations of each of these amino acids were incubated separately with glycollate, the utilization of serine was greater than that of glutamate. The utilization of glutamate was substantially reduced by the presence of relatively low concentrations of serine in the reaction mixture, whereas even high concentrations of glutamate caused only small reductions in serine utilization. Over the entire range of concentrations of amino acids examined, serine was invariably the preferred amino-group donor, but this preference was abolished at higher concentrations of glyoxylate. Serine not only competed favourably for glyoxylate but also inhibited L-glutamate: glyoxylate aminotransferase (GGAT), the degree of inhibition depending upon the glyoxylate concentration. Studies of L-serine: glyoxylate aminotransferase (SGAT) and GGAT in partially purified extracts from spinach-beet leaves confirmed that serine competitively inhibited GGAT but glutamate did not affect SGAT. Both enzymes were inhibited by high glyoxylate concentrations, the inhibition being relieved by suitably high concentrations of the appropriate amino acid. It is concluded that at the low glyoxylate concentrations likely to occur in vivo, the preferential utilization of serine would ensure flux through the glycollate pathway to glycerate, but at higher concentrations of glyoxylate, both enzymes could be fully active in glyoxylate amination.Abbreviations SGAT L-serine: glyoxylate aminotransferase - GGAT L-glutamate: glyoxylate aminotransferase  相似文献   

18.
Alanine:glyoxylate aminotransferase has been reported to be present as the apo form in the peroxisomes and as the holo form in the mitochondria in chicken kidney. In contrast, the enzyme was found to be present as the holo form both in the peroxisomes and in the mitochondria in pigeon kidney, suggesting that birds are classified into two groups on the basis of intraperoxisomal form of kidney alanine:glyoxylate aminotransferase. In the kidney, the pigeon peroxisomal holo enzyme did not cross-react immunologically with the chicken peroxisomal apo enzyme.  相似文献   

19.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

20.
Euglena contains glutamate:glyoxylate aminotransferase (GGT) both in mitochondria and in cytosol. Both isoforms were separated from each other by DEAE-cellulose chromatography. The mitochondrial enzyme had an apparent Km of 1.9 mM for glutamate and the cytosolic enzyme 52.6 mM. Mitochondrial GGT was further purified by ammonium sulfate fractionation, isoelectric focusing, and gel chromatography. It had a molecular weight of 141,000 and an isoelectric point of pH 4.88; the optimum pH was 8.5. Its apparent Km values for glutamate and for glyoxylate were 2.0 and 0.25 mM, respectively. In addition to glutamate, mitochondrial GGT used 5-hydroxytryptophan, tryptophan, and cysteine as amino donors in the transamination to glyoxylate. Alanine did not support the activity. The relative activity of the enzyme for amino acceptors on the transamination from glutamate was 4-hydroxyphenylpyruvate greater than phenylpyruvate greater than glyoxylate greater than hydroxypyruvate. Pyruvate and 2-oxoglutarate were not used in the reaction. Evidence that GGT functions mainly in the irreversible transamination between glutamate and glyoxylate is presented. The functional significance of GGT in the glycolate pathway of Euglena is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号