首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A polygalacturonase-inhibiting protein (PGIP) was detected in soybean (Glycine max (L.) Merr.) seedlings. The protein was purified from germinating seeds and appeared to consist of at least three components with very close molecular weights (between 37 and 40 kDa) but each showing a unique N-terminal sequence. Primers specific for N-terminal and C-terminal nucleotide sequences of field bean (Phaseolus vulgaris L.) PGIP were used in a polymerase chain reaction (PCR) on soybean DNA, and only one amplification band was obtained. The amplified product was cloned and one of the PCR clones was sequenced. The nucleotide sequence comprises 942 bp with a single open reading frame which encodes a polypeptide of 313 amino-acid residues with a predicted molecular weight of 33984 Daltons and an isoelectric point of 8.21. Analysis of genome organization showed a single gene copy of PGIP with few related sequences, and wounding of soybean hypocotyls showed a strong induction of expression of the PGIP gene. The PGIP showed different activities toward three purified fungal endo-polygalacturonases (endo-PGs) (two endoPGs from Sclerotinia sclerotiorum and one endo-PG from Aspergillus niger). A possible involvement of soybean PGIP in plant defence against fungal pathogens is discussed.  相似文献   

3.
Homogeneous endo-polygalacturonase (PG) was covalently bound to cyanogen-bromide-activated Sepharose, and the resulting PG-Sepharose conjugate was utilized to purify, by affinity chromatography, a protein from Phaseolus vulgaris hypocotyls that binds to and inhibits PG. Isoelectric focusing of the purified PG-inhibiting protein (PGIP) showed a major protein band that coincided with PG-inhibiting activity. PGIP formed a complex with PG at pH 5.0 and at low salt concentrations. The complex dissociated in 0.5 m Na-acetate and pH values lower than 4.5 or higher than 6.0. Formation of the PG-PGIP complex resulted in complete inhibition of PG activity. PG activity was restored upon dissociation of the complex. The protein exhibited inhibitory activity toward PGs from Colletotrichum lindemuthianum, Fusarium moniliforme and Aspergillus niger. The possible role of PGIP in regulating the activity of fungal PG's and their ability to elicit plant defense reactions are discussed.  相似文献   

4.
5.
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant protein inhibitors of endo-polygalacturonases (PGs) that belong to the leucine-rich repeat (LRR) protein family. In bean, PGIP is encoded by a small gene family of four members among which Pvpgip2 encodes the most wide-spectrum and efficient inhibitor of fungal PGs. In order to evaluate the sequence polymorphism of Pvpgip2 and its functional significance, we have analyzed a number of wild and cultivated bean (P. vulgaris) accessions of Andean and Mesoamerican origin, and some genotypes from the related species P. coccineus, P. acutifolius, and P. lunatus. Our analyses indicate that the protein encoded by Pvpgip2 is highly conserved in the bean germplasm. The few detected polymorphic sites correspond to synonymous substitutions and only two wild genotypes contain a Pvpgip2 with a single non-synonymous replacement. Sequence comparison showed a slightly larger variation in the related bean species P. coccineus, P. acutifolius, and P. lunatus and confirmed the known phylogenetic relationships with P. vulgaris. The majority of the replacements were within the xxLxLxx region of the leucine rich repeat (LRR) domain and none of them affected residues contributing to structural features. The variant PGIPs were expressed in Nicotiana benthamiana using PVX as vector and their inhibitory activity compared to that of PvPPGIP2. All the variants were able to fully inhibit the four fungal PGs tested with minor differences. Taken together these results support the hypothesis that the overall sequence conservation of PGIP2 and minor variation at specific sites is necessary for high-affinity recognition of different fungal PGs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins that inhibit fungal endopolygalacturonases (PGs). They are encoded by multigene families whose members show functional redundancy and subfunctionalization for recognition of fungal PGs. In order to expand the information on the structure and functional features of legume PGIP, we have isolated and characterized four members of the soybean Pgip gene family and determined the properties of the encoded protein products. Sequence analysis showed that these genes form two clusters: one cluster of about 5 kbp containing Gmpgip1 and Gmpgip2, and the other containing Gmpgip3 and Gmpgip4 within a 60 kb fragment of a separate BAC clone. Sequence diversification of the four members resides mainly in the xxLxLxx region that includes residues forming the β-sheet B1. When compared with other legume Pgip genes, Gmpgip3 groups with the bean genes Pvpgip1 and Pvpgip2, suggesting that these genes are closer to the ancestral gene. At the protein level, only GmPGIP3 shows the capability to inhibit fungal PGs. The spectrum of inhibition of GmPGIP3 against eight different fungal PGs mirrors that of the PGIP purified from soybean tissues and is similar to that of the bean PvPGIP2, one of the most efficient inhibitors so far characterized. We also report that the four Gmpgip genes are differentially regulated after wounding or during infection with the fungal pathogen Sclerotinia sclerotiorum. Following fungal infection Gmpgip3 is up regulated promptly, while Gmpgip2 is delayed.  相似文献   

7.
Plants produce polygalacturonase-inhibiting proteins (PGIPs) as part of their defense against disease. PGIPs have leucine-rich motifs, a characteristic shared by many proteins involved in plant resistance against pathogens. The objective of this study was to clone and analyse the partial sequences of the pgip genes from five selected commercially important Eucalyptus species. Genomic DNA from E. grandis, E. urophylla, E. camaldulensis, E. nitens and E. saligna was isolated from young leaves and used as the template in PCR reactions. Primers PC1, previously described, and Per3, developed in this study, were used in a degenerate PCR reaction to amplify a pgip fragment. A PCR fragment of 909 bp was amplified from each Eucalyptus spp., cloned and sequenced. The Eucalyptus pgip genes were highly conserved (98–100% identity). Analysis of the deduced amino-acid sequences revealed high similarities (44–94%) with other known PGIPs. In general, PGIPs have high homologies within genera as is the case in the genus Citrus. These observations strengthen the belief that PGIP plays an important role in plants. Received: 19 June 2000 / Accepted: 31 August 2000  相似文献   

8.
The level of polygalacturonase inhibitory protein (PGIP) genes involved in pollen development remains unclear. Characterization of the different PGIP genes that are expressed in pollen is necessary in understanding the similarities and differences of functions between the members of this gene family, as well as the underlying mechanism of pollen development. A gene-encoding putative PGIP, BcMF19 was successfully cloned on a cDNA-amplified fragment length polymorphism fragment after it was found to be up-regulated in the fertile flower buds of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis Makino) genic male sterile AB line (Bajh97-01A/B). The amino acid sequence of BcMF19 possessed the basic feature of PGIPs, containing an N-terminal signal peptide, several potential N-glycosylation sites, two disulfide bridges flanking both the N- and C-terminal regions, and 10 leucine-rich repeat (LRR) consensus sequences. Real-time RT-PCR verified the higher expression of BcMF19 in the fertile flower buds compared to the sterile flower buds. In situ hybridization showed that BcMF19 was exclusively expressed in the tapetal cells and microspores during anther development. These results indicate that BcMF19 is a novel PGIP gene that might be involved in pollen or tapetum development.  相似文献   

9.
A root-specific cDNA clone, PVR3, was isolated from a bean (Phaseolus vulgaris L.) root cDNA library by a differential screening procedure. The nucleotide sequence of PVR3 contains an open reading frame coding for an 11.14 kDa polypeptide of 102 amino acid residues; the first 25 amino acids correspond to the sequence characteristic of a signal peptide. Comparison of the deduced PVR3 polypeptide sequence with the polypeptide sequences of previously cloned genes indicates that PVR3 may encode a ns-LTP-like protein. Molecular modelling of the PVR3 protein predicts that it has a three-dimensional structure that is similar to the three-dimensional model determined from the maize ns-LTP. The PVR3 mRNA accumulated mainly in the roots of young seedlings. It can be detected at low levels in flowers, but it is not detected in other organs. Genomic Southern blot analysis indicates that the genomic DNA corresponding to PVR3 cDNA is encoded by a single gene or small gene family in the bean genome.  相似文献   

10.
11.
A near isogenic line (NIL) of Brassica oleracea var. botrytis with resistant and susceptible lines C712 and C731, was used in this study. More than 100 differentially expressed cDNA fragments were obtained from black rot resistant cauliflower plants obtained using cDNA-amplified fragment length polymorphism (AFLP) after infection with the pathogen. Thirteen of these fragments were cloned and subjected to reverse Northern blot analysis using both infected and control cDNA pools. Two positive clones, M2 and M6, were isolated. Northern dot blot and Northern blot analyses showed that M2 was constitutively expressed, whereas M6 contained a gene that was differentially expressed during pathogen infection. Moreover, M6 cDNA fragment was also highly expressed 16–24 h after H2O2 treatment. Southern blots showed that M6 is a single copy gene in the cauliflower genome, and encodes a protein with 84 % homology to gene on Arabidopsis chromosome 1. The deduced M6 protein has 91 % positive homology with the Arabidopsis 2A6 protein, which regulates ethylene synthesis; 76 % homology with a 1-aminocyclopropane-1-carboxylate oxidase (ACO), the last enzyme in ethylene synthesis; and 70 % homology with an ethylene induced DNA binding factor. These results suggest that M6 gene fragment is a new H2O2 downstream defense related gene fragment and can be induced by Xanthomonas campestris pv. campestris and H2O2.  相似文献   

12.
Based on the NH2-terminal sequence of three PR-10 isoforms previously identified in Lupinus albus leaves and a conserved amino-acid region in the PR-10 proteins from leguminosae, a pair of oligonucleotides was designed and used to amplify the corresponding cDNA fragment from a L. albus leaves cDNA library. A fragment of DNA of 200 bp was isolated from the polymerase chain reaction (PCR) mixture and subsequently used to screen the cDNA library. A cDNA coding for a PR-10 protein of 158 amino acid residues was cloned and sequenced. Subsequent studies involving Northern and Western blot analysis have shown that the PR-10 protein isoforms are differentially expressed during the development of the healthy lupin plant. High mRNA and protein contents were detected in roots and hypocotyls of both 7- and 20-d-old plants. In young leaves, the mRNA and protein contents were low and increasead in mature leaves. Tissue printing experiments with root sections suggest that the proteins are extracellular and are mainly associated with the vascular tissues in mature roots.  相似文献   

13.
 A cDNA fragment encoding a Lupinus albus. L. class-III chitinase, IF3, was isolated, using a cDNA probe from Cucumis sativus L., by in-situ plaque hybridization from a cDNA library constructed in the Uni-ZAP XR vector, with mRNAs isolated from mature lupin leaves. The cDNA had a coding sequence of 293 amino acids including a 27-residue N-terminal signal peptide. A class-III chitinase gene was detected by Southern analysis in the L. albus genome. Western blotting experiments showed that the IF3 protein was constitutively present during seed development and in all the studied vegetative lupin organs (i.e., roots, hypocotyls and leaves) at two growth stages (7- and 20-d-old plants). Accumulation of both the IF3 mRNA and IF3 protein was triggered by salicylic acid treatment as well as by abiotic (UV-C light and wounding) and biotic stress conditions (Colletotrichum gloeosporioides infection). In necrotic leaves, IF3 chitinase mRNA was present at a higher level than that of another mRNA encoding a pathogenesis-related (PR) protein from L. albus (a PR-10) and that of the rRNAs. We suggest that one role of the IF3 chitinase could be in the defense of the plant against fungal infection, though our results do not exclude other functions for this protein. Received: 15 March 1999 / Accepted: 12 July 1999  相似文献   

14.
15.
A germinating-seed assay was developed to determine the susceptibility of dry bean (Phaseolus vulgaris L.) to infection by Agrobacterium tumefaciens. Seedlings infected one to three days after germination were more susceptible to A. tumefaciens infection than seedlings germinated for five to seven days and the galls that formed on the one to three day seedlings were significantly larger. Nineteen genotypes of dry bean were screened with this assay and all were equally susceptible to nopaline, octopine and agropine biotypes of A. tumefaciens. In addition, cotyledonary nodes and hypocotyls of P. vulgaris were inoculated with disarmed strain A. tumefaciens strain C58Z707 and the avirulent A. rhizogenes strain A4RS (pRiB278b), respectively. Both strains contain the binary plasmid pGA482 which has the neomycin phosphotransferase II (NPT II) gene nested between T-DNA borders. From these infected tissues, callus and root tissues, respectively capable of growing in the presence of kanamycin were obtained. These tissues displayed NPT II activity and integrated copies of the NPT II gene were detected from putative transformed root cultures by genomic blot hybridization.  相似文献   

16.
A polygalacturonase inhibitor protein (PGIP) was characterized from tomato fruit. Differential glycosylation of a single polypeptide accounted for heterogeneity in concanavalin A binding and in molecular mass. Tomato PGIP had a native molecular mass of 35 to 41 kDa, a native isoelectric point of 9.0, and a chemically deglycosylated molecular mass of 34 kDa, suggesting shared structural similarities with pear fruit PGIP. When purified PGIPs from pear and tomato were compared, tomato PGIP was approximately twenty-fold less effective an inhibitor of polygalacturonase activity isolated from cultures of Botrytis cinerea. Based on partial amino acid sequence, polymerase chain reaction products and genomic clones were isolated and used to demonstrate the presence of PGIP mRNA in both immature and ripening fruit as well as cell suspension cultures. Nucleotide sequence analysis indicates that the gene, uninterrupted by introns, encodes a predicted 36.5 kDa polypeptide containing amino acid sequences determined from the purified protein and sharing 68% and 50% amino acid sequence identity with pear and bean PGIPs, respectively. Analysis of the PGIP sequences also revealed that they belong to a class of proteins which contain leucine-rich tandem repeats. Because these sequence domains have been associated with protein-protein interactions, it is possible that they contribute to the interaction between PGIP and fungal polygalacturonases.  相似文献   

17.
The soil-borne fungus, Fusarium solani f. sp. phaseoli, attacks roots and hypocotyls of bean (Phaseolus vulgaris) plants causing a devastating disease called root and foot rot. In a study of the host-pathogen relationship it was found that young bean roots, with the radicle just emerging, were highly tolerant to the pathogen, whereas older bean seedlings, with a fully developed root system, were completely susceptible. Investigations by low-temperature scanning electron microscopy demonstrated that significantly fewer spores and hyphae were present on the root surface of young bean seedlings as compared to older ones. A similar pattern of attachment was found when bean roots were inoculated with spores of F. solani f. sp. pisi, a related pathogen causing disease on peas but not on beans. Light microscopic studies showed that F. solani f. sp. pisi did not penetrate the root but rapidly formed thick-walled resting spores on the root surface. F. solani f. sp. phaseoli on the other hand quickly penetrated the root and formed an extensive network of fungal hyphae. These results demonstrate that the ability of fungal propagules to adhere to and to penetrate host tissues are two distinct processes. Furthermore, the data indicate that young bean roots lack a surface component necessary for attachment of fungal spores which may help explain their tolerance to Fusarium root rot.  相似文献   

18.
19.
The common bean (Phaseolus vulgaris) is one of the most important crop plants. About 50% of its genome is composed of repetitive sequences, but only a little fraction was isolated and characterized so far. In this paper, a new repetitive DNA family from the species, named PvMeso, was isolated and characterized in both gene pools of P. vulgaris (Andean and Mesoamerican) and related species. Two fragments, 1.7 and 2.3 kb long, were cloned from BAC 255F18, which has previously shown a repetitive pattern. The subclone PvMeso-31 showed a terminal block in chromosome 7. This subclone contains a 1,705 bp long, AT-rich repeat with small internal repeats and shares a 1.2 kb region with PvMeso-47, derived from the 2.3 kb fragment. The presence of this repetitive block was restricted to Mesoamerican accessions of the common bean. In P. acutifolius, P. leptostachyus and Andean P. vulgaris, only a faint, 2.3 kb fragment was visualized in Southern experiments. Moreover, in Mesoamerican accessions, two other fragments (1.7 kb and 3.4 kb) were strongly labelled as well. Taken together, our results indicate that PvMeso is a recently emerged, repeat family initially duplicated in chromosome 11, on ancestral Mesoamerican accession, and later amplified in chromosome 7, after the split of the two major gene pools of the common bean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号