首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dnmt2 enzymes have been widely conserved during evolution and contain all of the signature motifs of DNA (cytosine-5)-methyltransferases; however, the DNA methyltransferase activity of these proteins is comparatively weak and their biochemical and functional properties remain enigmatic. Recent evidence now shows that Dnmt2 has a novel tRNA methyltransferase activity, raising the possibility that the biological roles of these proteins might be broader than previously thought. This finding has important implications for understanding the evolutionary relationships among these enzymes.  相似文献   

2.
3.
Asymmetry of cell fate is one fundamental property of stem cells, in which one daughter cell self-renews, whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms, such as plants, fungi, and mammals, has already been shown. However, before this current work, asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs), and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing, differentiating human and mouse ESCs. Moreover, we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3), indicating a molecular mechanism that regulates this phenomenon. Furthermore, our data support the hypothesis that retention of chromatids with the “old” template DNA preserves the epigenetic memory of cell fate, whereas localization of “new” DNA strands and de novo DNA methyltransferase to the lineage-destined daughter cell facilitates epigenetic adaptation to a new cell fate.  相似文献   

4.
5.
Although their amino acid sequences and structure closely resemble DNA methyltransferases, Dnmt2 proteins were recently shown by Goll and colleagues to function as RNA methyltransferases transferring a methyl group to the C5 position of C38 in tRNA(Asp). We observe that human DNMT2 methylates tRNA isolated from Dnmt2 knock-out Drosophila melanogaster and Dictyostelium discoideum. RNA extracted from wild type D. melanogaster was methylated to a lower degree, but in the case of Dictyostelium, there was no difference in the methylation of RNA isolated from wild-type and Dnmt2 knock-out strains. Methylation of in vitro transcribed tRNA(Asp) confirms it to be a target of DNMT2. Using site directed mutagenesis, we show here that the enzyme has a DNA methyltransferase-like mechanism, because similar residues from motifs IV, VI, and VIII are involved in catalysis as identified in DNA methyltransferases. In addition, exchange of C292, which is located in a CFT motif conserved among Dnmt2 proteins, strongly reduced the catalytic activity of DNMT2. Dnmt2 represents the first example of an RNA methyltransferase using a DNA methyltransferase type of mechanism.  相似文献   

6.
Plant DNA methyltransferases   总被引:46,自引:0,他引:46  
DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.  相似文献   

7.
8.
Replication-independent chromatin loading of Dnmt1 during G2 and M phases   总被引:1,自引:0,他引:1  
The major DNA methyltransferase, Dnmt1, associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand. In view of the slow kinetics of Dnmt1 in vitro versus the fast progression of the replication fork, we have tested whether Dnmt1 associates with chromatin beyond S phase. Using time-lapse microscopy of mammalian cells expressing green-fluorescent-protein-tagged Dnmt1 and DsRed-tagged DNA Ligase I as a cell cycle progression marker, we have found that Dnmt1 associates with chromatin during G2 and M. This association is mediated by a specific targeting sequence, shows strong preference for constitutive but not facultative heterochromatin and is independent of heterochromatin-specific histone H3 Lys 9 trimethylation, SUV39H and HP1. Moreover, photobleaching analyses showed that Dnmt1 is continuously loaded onto chromatin throughout G2 and M, indicating a replication-independent role of Dnmt1 that could represent a novel and separate pathway to maintain DNA methylation.  相似文献   

9.
DNA methylation patterns in genome are maintained during replication by a DNA methyltransferase Dnmt1. Mouse Dnmt1 is a 180 kDa protein comprising the N-terminal regulatory domain, which covers 2/3 of the molecule, and the rest C-terminal catalytic domain. In the present study, we demonstrated that the limited digestion of full-length Dnmt1 with different proteases produced a common N-terminal fragment, which migrated along with Dnmt1 (1-248) in SDS-polyacrylamide gel electrophoresis. Digestion of the N-terminal domains larger than Dnmt1 (1-248) with chymotrypsin again produced the fragment identical to the size of Dnmt1 (1-248). These results indicate that the N-terminal domain of 1-248 forms an independent domain. This N-terminal domain showed DNA binding activity, and the responsible sequence was narrowed to the 79 amino acid residues involving the proliferating cell nuclear antigen (PCNA) binding motif. The DNA binding activity did not distinguish between DNA methylated and non-methylated states, but preferred to bind to the minor groove of AT-rich sequence. The DNA binding activity of the N-terminal domain competed with the PCNA binding. We propose that DNA binding activity of the N-terminal domain contributes to the localization of Dnmt1 to AT-rich sequence such as Line 1, satellite, and the promoter of tissue-specific silent genes.  相似文献   

10.
We present the first in vitro study investigating the catalytic properties of a mammalian de novo DNA methyltransferase. Dnmt3a from mouse was cloned and expressed in Escherichia coli. It was shown to be catalytically active in E. coli cells in vivo. The methylation activity of the purified protein was highest at pH 7.0 and 30 mM KCl. Our data show that recombinant Dnmt3a protein is indeed a de novo methyltransferase, as it catalyzes the transfer of methyl groups to unmethylated substrates with similar efficiency as to hemimethylated substrates. With oligonucleotide substrates, the catalytic activity of Dnmt3a is similar to that of Dnmt1: the K(m) values for the unmethylated and hemimethylated oligonucleotide substrates are 2.5 microM, and the k(cat) values are 0.05 h(-1) and 0.07 h(-1), respectively. The enzyme catalyzes the methylation of DNA in a distributive manner, suggesting that Dnmt3a and Dnmt1 may cooperate during de novo methylation of DNA. Further, we investigated the methylation activity of Dnmt3a at non-canonical sites. Even though the enzyme shows maximum activity at CpG sites, with oligonucleotide substrates, a high methylation activity was also found at CpA sites, which are modified only twofold slower than CpG sites. Therefore, the specificity of Dnmt3a is completely different from that of the maintenance methyltransferase Dnmt1, which shows a 40 to 50-fold preference for hemimethylated over unmethylated CpG sites and has almost no methylation activity at non-CpG sites.  相似文献   

11.
DNA methyltransferase 2 (Dnmt2) is a dual-specificity DNA methyltransferase, which contains a weak DNA methyltransferase and novel tRNA methyltransferase activity. However, its biological function is still enigmatic. To elucidate the expression profiles of Dnmt2 in Artemia franciscana, we isolated the gene encoding a Dnmt2 from A. franciscana and named it as AfDnmt2. The cDNA of AfDnmt2 contained a 1140-bp open reading frame that encoded a putative Dnmt2 protein of 379 amino acids exhibiting 32% approximately 39% identities with other known Dnmt2 homologs. This is the first report of a DNA methyltransferase gene in Crustacean. By using semi-quantitative RT-PCR, AfDnmt2 was found to be expressed through all developmental stages and its expression increased during resumption of diapause cysts development. Southern blot analysis indicated the presence of multiple copies of AfDnmt2 genes in A. franciscana.  相似文献   

12.
Li BZ  Huang Z  Cui QY  Song XH  Du L  Jeltsch A  Chen P  Li G  Li E  Xu GL 《Cell research》2011,21(8):1172-1181
Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.  相似文献   

13.
Dnmt2 is the most strongly conserved cytosine DNA methyltransferase in eukaryotes. It has been found in all organisms possessing methyltransferases of the Dnmt1 and Dnmt3 families, whereas in many others Dnmt2 is the sole cytosine DNA methyltransferase. The Dnmt2 molecule contains all conserved motifs of cytosine DNA methyltransferases. It forms 3D complexes with DNA very similar to those of bacterial DNA methyltransferases and performs cytosine methylation by a catalytic mechanism common to all cytosine DNA methyltransferases. Catalytic activity of the purified Dnmt2 with DNA substrates is very low and could hardly be detected in direct biochemical assays. Dnmt2 is the sole cytosine DNA methyltransferase in Drosophila and other dipteran insects. Its overexpression as a transgene leads to DNA hypermethylation in all sequence contexts and to an extended life span. On the contrary, a null-mutation of the Dnmt2 gene leads to a diminished life span, though no evident anomalies in development are observed. Dnmt2 is also the sole cytosine DNA methyltransferase in several protists. Similar to Drosophila these protists have a very low level of DNA methylation. Some limited genome compartments, such as transposable sequences, are probably the methylation targets in these organisms. Dnmt2 does not participate in genome methylation in mammals, but seems to be an RNA methyltransferase modifying the 38th cytosine residue in anticodon loop of certain tRNAs. This modification enhances stability of tRNAs, especially in stressful conditions. Dnmt2 is the only enzyme known to perform RNA methylation by a catalytic mechanism characteristic of DNA methyltransferases. The Dnmt2 activity has been shown in mice to be necessary for paramutation establishment, though the precise mechanisms of its participation in this form of epigenetic heredity are unknown. It seems likely, that either of the two Dnmt2 activities could become a predominant one during the evolution of different species. The high level of the Dnmt2 evolutionary conservation proves its activity to have a significant adaptive value in natural environment.  相似文献   

14.
15.
16.
A Dnmt2-like protein mediates DNA methylation in Drosophila   总被引:9,自引:0,他引:9  
The methylation status of Drosophila DNA has been discussed controversially over a long time. Recent evidence has provided strong support for the existence of 5-methylcytosine in DNA preparations from embryonic stages of fly development. The Drosophila genome contains a single candidate DNA methyltransferase gene that has been termed Dnmt2. This gene belongs to a widely conserved family of putative DNA methyltransferases. However, no catalytic activity has been demonstrated for any Dnmt2-like protein yet. We have now established a protocol for the immunological detection of methylated cytosine in fly embryos. Confocal analysis of immunostained embryos provided direct evidence for the methylation of embryonic DNA. In order to analyse the function of Dnmt2 in DNA methylation, we depleted the protein by RNA interference. Depletion of Dnmt2 had no detectable effect on embryonic development and resulted in a complete loss of DNA methylation. Consistently, overexpression of Dnmt2 from an inducible transgene resulted in significant genomic hypermethylation at CpT and CpA dinucleotides. These results demonstrate that Dnmt2 is both necessary and sufficient for DNA methylation in Drosophila and suggest a novel CpT/A-specific DNA methyltransferase activity for Dnmt2 proteins.  相似文献   

17.
18.
19.
The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES: Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT: ? Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) ? Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).  相似文献   

20.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号