首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

3.
4.
Background information. Activation of MAPKs (mitogen‐activated protein kinases), in particular ERK1/2 (extracellular‐signal‐regulated kinase 1/2), has been reported to take place in a large variety of cell types after hypo‐osmotic cell swelling. Depending on cell type, ERK1/2 phosphorylation can then serve or not the RVD (regulatory volume decrease) process. The present study investigates ERK1/2 activation after aniso‐osmotic stimulations in turbot hepatocytes and the potential link between phosphorylation of these proteins and RVD. Results. In turbot hepatocytes, Western‐blot analysis shows that a hypo‐osmotic shock from 320 to 240 mOsm·kg?1 induced a rapid increase in ERK1/2 phosphorylation, whereas a hyper‐osmotic shock from 320 to 400 mOsm·kg?1 induced no significant change in the phosphorylation of these proteins. The hypo‐osmotic‐induced ERK1/2 phosphorylation was significantly prevented when hypo‐osmotic shock was performed in the presence of the specific MEK (MAPK/ERK kinase) inhibitor PD98059 (100 μM). In these conditions, the RVD process was not altered, suggesting that ERK1/2 did not participate in this process in turbot hepatocytes. Moreover, the hypo‐osmotic‐induced activation of ERK1/2 was significantly prevented by breakdown of extracellular ATP by apyrase (10 units·ml?1), by inhibition of purinergic P2 receptors by suramin (100 μM) or by calcium depletion using EGTA (1 mM) and thapsigargin (1 μM). Conclusions. In turbot hepatocytes, hypo‐osmotic swelling but not hyper‐osmotic shrinkage induced the activation of ERK1/2. However, these proteins do not seem to be involved in the RVD process. Their hypo‐osmotic‐induced activation is partially due to cascades of signalling events triggered by the binding of released ATP on purinergic P2 receptors and requires the presence of calcium.  相似文献   

5.
6.
In the present study, we found that (−)-epigallocatechin-3-gallate (EGCG) significantly up-regulated the mRNA expression of the Th1/Th2 cytokines including IL-2, IFN-γ, IL-5 and IL-13 in Jurkat T cells. The EGCG-induced mRNA up-regulation of IL-2 and IL-5 was predominantly affected by the extracellular signal-regulated protein kinase (ERK) signalling, whereas IL-13 gene expression, the most responsive to the EGCG treatment, was dependent on neither ERK nor c-jun NH2-terminal kinase (JNK) signalling. IFN-γ gene expression was partially mitigated by both inhibitors of the ERK and JNK pathways. Furthermore, catalase significantly attenuated the intracellular peroxide production, phosphorylation of ERK and JNK, and all cytokine gene expressions induced by EGCG. In addition, physiologically relevant concentrations of both EGCG and H2O2-induced up-regulation of IL-5 gene expression. Our findings provide biological evidence that EGCG induces Th1/Th2 cytokine mRNA expression via H2O2 production followed by activation of ERK or JNK in Jurkat T cells.  相似文献   

7.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

8.
In vitromegakaryocytic differentiation of the pluripotent K562 human leukemia cell line is induced by PMA. Treatment of K562 cells with PMA results in growth arrest, polyploidy, morphological changes, and increased cell–cell and cell–substrate adhesion. These PMA-induced changes in K562 cells are preceded by a rapid rise in the activity of MEK (MAP kinase/extracellular regulated kinases) that leads to a sustained activation of ERK2 (extracellular regulated kinase; MAPK). Blockade of MEK1 activation by PD098059, a recently described specific MEK inhibitor [D. T. Dudleyet al.(1995).Proc. Natl. Acad. Sci. USA92, 7686–7689], reverses both the growth arrest and the morphological changes of K562 cells induced by PMA treatment. These changes are not associated with a disruption of PMA-induced down-regulation of BCR-ABL kinase or early integrin signaling events but are associated with a block of the cell-surface expression of the gpIIb/IIIa (CD41) integrin, a cell marker of megakaryocytic differentiation. These results demonstrate that the PMA-induced signaling cascade initiated by protein kinase C activation requires the activity of the MEK/ERK signaling complex to regulate cell cycle arrest, thus regulating the program that leads to the cell-surface expression of markers associated with megakaryocytic differentiation.  相似文献   

9.
Background information. Nitric oxide (NO) is an important molecule in innate immune responses. In molluscs NO is produced by mobile defence cells called haemocytes; however, the molecular mechanisms that regulate NO production in these cells is poorly understood. The present study focused on the role of cell signalling pathways in NO production by primary haemocytes from the snail Lymnaea stagnalis. Results. When haemocytes were challenged with PMA (10 μM) or the β‐1,3‐glucan laminarin (10 mg/ml), an 8‐fold and 4‐fold increase in NO production were observed after 60 min respectively. Moreover, the NOS (NO synthase) inhibitors L‐NAME (NG‐nitro‐L‐arginine methyl ester) and L‐NMMA (NG‐monomethyl‐L‐arginine) were found to block laminarin‐ and PMA‐induced NO synthesis. Treatment of haemocytes with PMA or laminarin also increased the phosphorylation (activation) status of PKC (protein kinase C). When haemocytes were preincubated with PKC inhibitors (calphostin C or GF109203X) or inhibitors of the ERK (extracellular‐signal‐regulated kinase) pathway (PD98059 or U0126) prior to challenge, significant reductions in PKC and ERK phosphorylation and NO production were observed following exposure to laminarin or PMA. The greatest effect on NO production was seen with GF109203X and U0126, with PMA‐induced NO production inhibited by 94% and 87% and laminarin‐induced NO production by 50% and 91% respectively. Conclusions. These data suggest that ERK and PKC comprise part of the signalling machinery that regulates NOS activation and subsequent production of NO in molluscan haemocytes. To our knowledge, this is the first report that shows a role for these signalling proteins in the generation of NO in invertebrate defence cells.  相似文献   

10.
11.
We explored the interplay between the intracellular energy sensor AMP‐activated protein kinase (AMPK), extracellular signal‐regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)‐induced neuronal differentiation of SH‐SY5Y human neuroblastoma cells. PMA‐triggered expression of neuronal markers (dopamine transporter, microtubule‐associated protein 2, β‐tubulin) was associated with an autophagic response, measured by the conversion of microtubule‐associated protein light chain 3 (LC3)‐I to autophagosome‐bound LC3‐II, increase in autophagic flux, and expression of autophagy‐related (Atg) proteins Atg7 and beclin‐1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference‐mediated silencing of AMPK suppressed PMA‐induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA‐induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA‐induced differentiation of SH‐SY5Y cells. Therefore, PMA‐induced neuronal differentiation of SH‐SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response.

  相似文献   


12.
13.
A number of natural phytochemicals have anti‐photoaging properties that appear to be mediated through the inhibition of matrix metalloproteinase‐1 (MMP‐1) expression, but their direct target molecule(s) and mechanism(s) remain unclear. We investigated the effect of naringenin, a major flavonoid found in citrus, on UVB‐induced MMP‐1 expression and identified its direct target. The HaCaT human skin keratinocyte cell line and 3‐dimensional (3‐D) human skin equivalent cultures were treated or not treated with naringenin for 1 hr before exposure to UVB. The mechanism and target(s) of naringenin were analysed by kinase assay and multiplex molecular assays. Dorsal skins of hairless mice were exposed to UVB 3 times per week, with a dose of irradiation that was increased weekly by 1 minimal erythema dose (MED; 45 mJ/cm2) to 4 MED over 15 weeks. Wrinkle formation, water loss and water content were then assessed. Naringenin suppressed UVB‐induced MMP‐1 expression and AP‐1 activity, and strongly suppressed UVB‐induced phosphorylation of Fos‐related antigen (FRA)‐1 at Ser265. Importantly, UVB irradiation‐induced FRA1 protein stability was reduced by treatment with naringenin, as well as with a mitogen‐activated protein kinase (MEK) inhibitor. Naringenin significantly suppressed UVB‐induced extracellular signal‐regulated kinase 2 (ERK2) activity and subsequently attenuated UVB‐induced phosphorylation of p90RSK by competitively binding with ATP. Constitutively active MEK (CA‐MEK) increased FRA1 phosphorylation and expression and also induced MMP‐1 expression, whereas dominant‐negative ERK2 (DN‐ERK2) had opposite effects. U0126, a MEK inhibitor, also decreased FRA1 phosphorylation and expression as well as MMP‐1 expression. The photoaging data obtained from mice clearly demonstrated that naringenin significantly inhibited UVB‐induced wrinkle formation, trans‐epidermal water loss and MMP‐13 expression. Naringenin exerts potent anti‐photoaging effects by suppressing ERK2 activity and decreasing FRA1 stability, followed by down‐regulation of AP‐1 transactivation and MMP‐1 expression.  相似文献   

14.
Hydrogen sulfide (H2S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H2S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H2S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.  相似文献   

15.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
19.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号