首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromal cells are key regulators of growth and differentiation in the adult human prostate. Alterations in the stroma are believed to initiate the development of benign prostatic hyperplasia, and stromal–epithelial interactions may have a role in malignant progression. The prostatic stroma is composed of two major cell types, smooth muscle cells and fibroblasts. Cell cultures from the prostatic stroma have been established by several investigators, but the phenotype of these cells has not been extensively characterized and it is not clear whether they are fibroblastic or smooth muscle-like. In this study, the response of stromal cells cultured from normal prostatic tissues to transforming growth factor-β (TGFβ) was investigated. We confirmed a previous report that TGFβ inhibited the growth of prostatic stromal cells in serum-containing medium, and showed that inhibition also occurred in serum-free medium. Growth inhibition by TGFβ was irreversible after 24 to 72 h of exposure. In the absence of TGFβ, cells were fibroblastic and expressed vimentin and fibronectin but little α-smooth muscle actin. After 3 days of exposure to 1 ng/ml of TGFβ, the majority of cells expressed α-smooth muscle actin and desmin, as demonstrated by immunocytochemistry and immunoblot analysis. This effect was specific and α-smooth muscle actin was not induced by two other growth-inhibitory factors, retinoic acid or 1,25-dihydroxyvitamin D3. These results suggest that TGFβ is an important regulator of growth and differentiation of prostatic stromal cells and that a smooth muscle cell phenotype is promoted in the presence of TGFβ.  相似文献   

2.
It has previously been shown that mammary stromal cells possess the ability to maintain a fibroblast-like phenotype or differentiate in vitro into mature adipocytes in a hormone-dependent manner. This paper reports that rat mammary stromal cells can also differentiate into capillary-like structures in vitro when cultured on a reconstituted basement membrane (RBM). The differentiation potential of mammary stromal cells was compared with that of human umbilical vein endothelial cells (HUVEC) and 3T3-L1 preadipocytes. When cultured on plastic, mammary stromal cells, 3T3-L1 and HUVEC maintained a fibroblast-like phenotype. Mammary stromal cells and 3T3-L1, but not HUVEC, differentiated into mature adipocytes when cultured in adipogenic medium. When plated on reconstituted basement membrane, all three cell types began to migrate and organize themselves into an interconnected capillary network. By 18-20 h, mammary stromal cells organized into complex, highly branched capillary-like tubules whereas 3T3-L1 cells and HUVEC formed more simple structures. Cross-sectional analysis demonstrated the presence of an internal lumen. Mammary stromal cells were unique in their ability to progressively develop into a three-dimensional, highly branched network invading the RBM surface. The network formation was enhanced by the presence of vascular endothelial growth factor (VEGF) and was inhibited by the anti-angiogenic drug suramin. Western blotting analysis demonstrated the presence of the endothelial-specific marker flk-1, as well as the presence of the tight-junction-associated protein ZO-1. Mammary stromal cell differentiation into capillary structures was not a terminal state, since these cells were still able to differentiate into adipocytes when exposed to adipogenic medium. These findings suggest that mammary stromal cells differentiate into fibroblasts, adipocytes or vascular structures in a hormone- and substatum-dependent manner, and may explain the dramatic changes in stromal composition during both normal mammary gland development and tumorigenesis.  相似文献   

3.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

4.
5.
Background aimsThis is the first study to compare the treatment of horse tendon and ligament injuries with the use of mesenchymal stromal cells (MSCs) obtained from two different sources: amniotic membrane (AMSCs) and bone marrow (BM-MSCs). The objective was to prove the ability of AMSCs to exert beneficial effects in vivo.MethodsFive million allogeneic frozen-thawed AMSCs or autologous fresh BM-MSCs were injected intralesionally in horses belonging to group A (51 horses) and group B (44 horses). The interval lesion/implantation was of 6–15 days for the AMSCs and 16–35 days for the BM-MSCs. Healing was assessed clinically and ultrasonographically. Follow-up was monitored for 2 further years from return to full work.ResultsNo significant adverse effects after MSCs treatment were seen in any of the horses studied, independent of the type of stromal cell implanted. All animals belonging to group A resumed their activities between 4–5 months after treatment, whereas animals of group B resumed their activities after 4–12 months. The rate of re-injury in horses treated with AMSCs is lower (4.00%) compared with the average observed when horses were treated with BM-MSCs (23.08%).ConclusionsThe possibility to inject allogeneic AMSCs in real time, before any ultrasonographic change occurs within the injured tendon and ligament, together with the higher plasticity and proliferative capacity of these cells compared with BM-MSCs, represents the main features of interest for this novel approach for the treatment of equine tendon diseases. An obvious active proliferative healing in the area injected with AMSCs makes these cells more effective than BM-MSCs.  相似文献   

6.
Adipose tissue contains a stroma that can be easily isolated. Thus, human adipose tissue presents an source of multipotent stromal cells. In order to determine the implication of hematopoietic markers in adipocyte biology, we have defined part of the phenotype of the human adipose tissue-derived stromal cells, and compared this to fully differentiated adipocytes. Flow cytometry demonstrates that the protein expression phenotype of both cell types are similar and includes the expression of CD10, CD13, CD34, CD36, CD55, CD59 and CD65. No significant difference between subcutaneous and omental adipose tissue could be demonstrated concerning the expression of these markers. However, the expression of CD34, CD36 and CD65 is cell-dependent. While the expression of CD36 and CD65 doubled between stromal cells and mature adipocytes, the expression of CD34 decreased, despite this protein being present on the mature adipocyte. As CD34 is described as a stem cell marker and it being unlikely to be expressed on differentiated cells, this result was confirmed by immunostaining and western blot. The clear function of this protein on the adipocyte membrane remains to be determined. The characterization of new proteins on mature adipocytes could have broad implications for the comprehension of the biology of this tissue.  相似文献   

7.
The intestinal crypt-niche interaction is thought to be essential to the function, maintenance, and proliferation of progenitor stem cells found at the bases of intestinal crypts. These stem cells are constantly renewing the intestinal epithelium by sending differentiated cells from the base of the crypts of Lieberkühn to the villus tips where they slough off into the intestinal lumen. The intestinal niche consists of various cell types, extracellular matrix, and growth factors and surrounds the intestinal progenitor cells. There have recently been advances in the understanding of the interactions that regulate the behavior of the intestinal epithelium and there is great interest in methods for isolating and expanding viable intestinal epithelium. However, there is no method to maintain primary human small intestinal epithelium in culture over a prolonged period of time. Similarly no method has been published that describes isolation and support of human intestinal epithelium in an in vivo model. We describe a technique to isolate and maintain human small intestinal epithelium in vitro from surgical specimens. We also describe a novel method to maintain human intestinal epithelium subcutaneously in a mouse model for a prolonged period of time. Our methods require various growth factors and the intimate interaction between intestinal sub-epithelial myofibroblasts (ISEMFs) and the intestinal epithelial cells to support the epithelial in vitro and in vivo growth. Absence of these myofibroblasts precluded successful maintenance of epithelial cell formation and proliferation beyond just a few days, even in the presence of supportive growth factors. We believe that the methods described here can be used to explore the molecular basis of human intestinal stem cell support, maintenance, and growth.  相似文献   

8.
In this article, we examined the distribution of myofibroblasts and CD34-positive stromal cells in normal renal pelvis and ureter and their cancers using immunohistochemistry. Eighteen tumors and normal tissues apart from the main tumor were examined. In the wall of normal renal pelvis and ureter, no myofibroblasts were observed through all layers, but CD34-positive stromal cells were observed in the deep area of lamina propria, muscular layer and adventitia. In the stroma of renal pelvic and ureteral cancers, myofibroblasts were distributed in fifteen tumors and were absent in three tumors. All three tumors containing no myofibroblasts in the stroma were non-invasive type and all invasive cancers contained myofibroblasts in the stroma. CD34-positive stromal cells were consistently absent in the stroma of cancers, irrespective of the invasiveness. Finally, myofibroblasts are major stromal components in renal pelvic and ureteral cancers, particularly in invasive cancers, and CD34-positive stromal cells are consistently absent or lost in the stroma of their cancers. These findings suggest that the invasion of renal pelvic and ureteral cancers may cause the phenotypic change of stromal cells.  相似文献   

9.
In order to understand the stromal reaction associated with colorectal neoplasms, we examined specimens from 26 patients including normal colorectal tissues (n=15), carcinoid tumors (n=12), well differentiated adenocarcinomas (n=10), and poorly differentiated adenocarcinomas (n=4), using an immunohistochemical method. Myofibroblasts and CD34-positive stromal cells were distributed in the mucosa and in the area between the submucosal and subserosal layers, respectively. However, the distribution of these cells markedly changed with the invasion of neoplasms. Namely, myofibroblasts were abundant in the invasive stroma of all colorectal neoplasms. CD34-positive stromal cells were completely absent from the invasive stroma of colorectal cancers. On the other hand, CD34-positive stromal cells were absent from four out of five carcinoid tumor cases with lesions measuring less than 2 mm in size, but were present in all seven cases of carcinoid tumors measuring more than 2 mm. Double-immunostaining identified stromal cells expressing both ASMA and CD34 in several carcinoid tumor cases. Finally, no CD34-positive stromal cells were observed in the invasive stroma of colorectal cancers. However, the distribution of these cells in carcinoid tumors may depend on the lesion size. Namely, CD34-positive stromal cells existed between neoplastic nests in large-sized carcinoid tumors. Myofibroblasts in the stroma of colorectal neoplasms may originate from CD34-positive stromal cells.  相似文献   

10.
In this study, we aimed to explore the role of liver kinase b1 (Lkb1) in the biological characteristics and immune regulation of amniotic mesenchymal stem cells (AMSCs). AMSCs were identified via the cell surface markers using flow cytometry. We knocked down the expression of Lkb1 in AMSCs using lentivirus-mediated Lkb1-specific shRNA. The efficiency of the knockdown was detected by flow cytometry, RT-qPCR, and western blot. The AMSC-related phenotype was determined by flow cytometric analysis via staining surface markers. Fibroblast colony-forming cells (CFU-F) assay and Ki-67 intracellular staining assay were used to determine the proliferative capacity. The differentiated and immunosuppressive capabilities were determined by conditional induction of differentiation and co-culture experiments. We observed that AMSCs along with Lkb1 knockdown (AMSCs-Lkb1) displayed similar cellular morphology and surface antigen expression patterns as those observed in AMSCs. However, AMSCs-Lkb1 exhibited an enhanced differentiation capacity towards osteogenesis and chondrogenesis while it showed defective proliferation and increased apoptosis. Furthermore, AMSCs-Lkb1 showed an enhanced immunosuppressive capacity by directly inhibiting conventional T cells and indirectly inducing production of regulatory T cells (Treg). Interestingly, Treg produced by AMSCs-Lkb1 displayed stronger proliferative capacity as compared to those produced by AMSCs. Our results indicate that Lkb1 plays a vital role in maintaining self-renewal of AMSCs and regulating immune equivalence, and may hold potential for the clinical management of diseases such as GVHD.  相似文献   

11.
To elucidate the distribution and role of myofibroblasts and CD34-positive stromal cells in various pancreatic lesions, we performed an immunohistochemical study using a streptoavidin-biotin immunoperoxidase technique. We selected 43 pancreatic lesions from 1 biopsied, 22 surgically resected and 12 autopsied specimens: acute pancreatitis (n=3), chronic non-obstructive pancreatitis (n=4), obstructive pancreatitis (n=7), islet cell tumor (n=4), serous cystadenoma (n=7), mucinous cystadenoma (n=6), and invasive ductal carcinoma (n=12). In normal pancreas, myofibroblasts and CD34-positive stromal cells were predominantly present in the peridcutal and periacinar areas, respectively. Both myofibroblasts and CD34-positive cells were observed in the stroma of chronic pancreatitis. In four islet cell tumors, myofibroblasts were present in the stroma of the tumor center, but no CD34-positive stromal cells were identified. Additionally, myofibroblasts and CD34-positive stromal cells were located in the inner layer and the outer layer of the capsule of three islet cell tumors, respectively. In nine of the thirteen cystadenomas, only myofibroblasts were recognized in the cyst wall. In the remaining four cystadenomas, a small number of CD34-positive cells were observed in the cyst wall. In 12 invasive ductal carcinomas, the stroma possessed a lot of myofibroblasts, but there were no or few CD34-positive stromal cells. In conclusion, it seems that the abundant amount of CD34-stromal cells in the main lesions is characteristic of chronic inflammatory lesions. Myofibroblasts and CD34-positive stromal cells may play a role in regulating the tumor growth in the capsule of islet cell tumors of the pancreas.  相似文献   

12.
13.
The objective of this study is to investigate the negative immunomodulatory capacity of human amniotic mesenchymal cells (AMSCs) and their possible intrinsic mechanism, by which we can confirm that they modulate microglial activation of central nervous system from multiple perspectives at the molecular level. The identification of the immune phenotype of AMSCs and microglial cells was executed by immunohistochemical methods and flow cytometry. Meanwhile, the influence and mechanism of amniotic mesenchymal cells in vitro on proliferation, cell cycle, and cytokine release of activated microglia (MI) would be detected by ELISA, β-liquid scintillation counting method, and flow cytometry. Human amnion mesenchymal cells highly expressed negative co-stimulatory molecules PD-L1, while its ligand PD1 was expressed with high level by activated MI. When adding the PD-L1mAb to the mixed culture system composed of AMSCs and activated MI, the proliferation inhibitory effect and the cycle-blocking effect produced by the former on the latter would be partially reversed; at the same time, the impact of the latter cytokine secretion would be adjusted. As a conclusion, AMSCs play inhibitory effects on microglial activation, proliferation, and immune effects partially through the PD-L1–PD1 signaling pathways.  相似文献   

14.
We compared the two sources of adipose and bone marrow-derived mesenchymal stem cells (BMSCs and AMSCs ) in multiple differentiation capacity and biological characteristics to provide a theoretical basis for stem cells transplantation. We isolated bone marrow- and adipose-derived mesenchymal stem cells and compared their phenotype,cell doubling time, the secretion of factors and their ability of multi-differentiation. We also compared their differences in T lymphocyte activation, proliferation and suppression. BMSCs and AMSCs were similar in cell phenotype and the differences existed only in the expression of CD106. On the proliferation rate, AMSCs were faster than BMSCs (doubling time 28 vs. 39?h). In addition, both of these two sources of cells were able to differentiate into bone, fat and cartilage that proved their stem cells properties and the number of stem cell progenitors (CFU-F) from adipose tissue were 10 times larger than those from bone marrow. But AMSCs showed a diminished capacity for suppressing T lymphocyte proliferation and activation compared to BMSCs. Cell origin and abundance were decisive factors in stem cells applications and, in the same volume, with the same premise of AMSCs and BMSCs, adipose tissue is a more promising source of stem cells.  相似文献   

15.
The endometrium is central to mammalian fertility. The endometrial stromal cells are very dynamic, growing and differentiating throughout the estrous cycle and pregnancy. In humans, stromal cells appear to have progenitor or stem cell capabilities and the cells can even differentiate into bone. It is not clear whether bovine endometrial stromal cells exhibit a similar phenotypic plasticity. So, the present study tested the hypothesis that bovine endometrial stromal cells could be differentiated along an osteogenic lineage. Pure populations of bovine stromal cells were isolated from the endometrium. The endometrial stromal cell phenotype was confirmed by morphology, prostaglandin secretion, and susceptibility to viral infection. However, cultivation of the cells in standard endometrial cell culture medium lead to a mesenchymal phenotype similar to that of bovine bone marrow cells. Furthermore, the endometrial stromal cells developed signs of osteogenesis, such as alizarin positive nodules. When the stromal cells were cultured in a specific osteogenic medium the cells rapidly developed the characteristics of mineralized bone. In conclusion, the present study has identified that stromal cells from the bovine endometrium show a capability for phenotype plasticity similar to mesenchymal progenitor cells. These observations pave the way for further investigation of the mechanisms of stroma cell differentiation in the bovine reproductive tract.  相似文献   

16.
The human amniotic membrane (hAM) has been successfully used as a natural carrier containing amniotic mesenchymal stromal cells, epithelial cells and growth factors. It has a little or no immunogenicity, and possesses useful anti-microbial, anti-inflammatory, anti-fibrotic and analgesic properties. It has been used for many years in several indications for soft tissue repair. We previously reported that hAM represents a natural and preformed sheet containing highly potent stem cells, and could thus be used for bone repair. Indeed, native hAM possesses pre-osteoblastic potential that can easily be stimulated, even as far as mineralization, by means of in vitro osteogenic culture. However, cell culture induces damage to the tissue, as well as to cell phenotype and function. The aim of this study was to evaluate new bone formation by fresh and in vitro osteodifferentiated hAM, alone or associated with an additional scaffold presenting osteoinductive properties. Moreover, we also aimed to determine the effect of in vitro hAM pre-osteodifferentiation on its in vivo biocompatibility/tissue degradation. Results showed that neither fresh nor osteodifferentiated hAM induced ectopic bone formation, whether or not it was associated with the osteoinductive scaffold. Secondly, fresh and osteodifferentiated hAM presented similar in vivo tissue degradation, suggesting that in vitro hAM pre-osteodifferentiation did not influence its in vivo biocompatibility.  相似文献   

17.
Carcinomas are composed of parenchymal and stromal elements, and the malignant behavior is principally dictated by the cancer cells. However, the malignant tumors not merely grow into a preexisting interstitial tissue, but they actively form a new stroma and modify their composition. Thus, the tumor stroma is significantly different from that of the neighboring tissues. Cancer cells may alter their stroma by cell-to-cell contact, soluble factors or by modification of the extracellular matrix (ECM), they induce myofibroblast differentiation and govern the desmoplastic stroma reaction. On the other hand, the stromal cells (especially the myofibroblasts) are able to modify the phenotype, invasiveness, metastatic capacity of carcinomas, typically promoting the progression. Regarding pancreatic cancer, the pancreatic stellate cells (PSCs) seem to be the key elements in the cross-talk between the parenchymal cells and the desmoplastic stroma. The tumor stroma is also rich in tumor-associated macrophages (TAM), but their role in the malignant process is contradictory and may be different in various tumor types, but most studies suggest a negative impact on the tumor growth. The relationship between the parenchymal and stromal elements is highly complex, they mutually alter their characteristics. Because the neostroma of the carcinomas largely seems to promote the invasiveness of the malignant tumors, novel therapeutic strategies are being evaluated targeting the stromal elements, with some encouraging, but still fragmentary results.  相似文献   

18.
In this study, we examined the phenotypic characteristics of human umbilical cord blood-derived mesenchymal stromal cells (UCB-derived MSCs) differentiated along an oligodendrocyte pathway. We induced human UCB-derived MSCs to form floating neurospheres, and these neurospheres were then induced to differentiate into oligodendrocyte progenitor-like cells using multiple induction factors. Differentiated UCB-derived MSCs showed morphologic characteristics of an oligodendrocyte phenotype. The expression of cell surface markers characteristic of oligodendrocyte progenitor cells or oligodendrocytes was determined by immunocytochemical staining. These results suggest that human UCB-derived MSCs can be induced to differentiate into cells with an oligodendrocyte phenotype and that these cells may have potential in the future cellular therapy of central neurological disorders.  相似文献   

19.
Y Akasaka 《Human cell》1990,3(3):193-200
Bone marrow and spleen are the major hematopoietic tissue in adult mice. However, little is known about the specific mechanism regulating hematopoiesis within these tissues. Since Dexter et al. first described conditions to maintain bone marrow hematopoiesis, long term bone marrow culture (LTBMC) has been developed in order to analyze the mechanism of the maintenance of proliferation and differentiation of hematopoietic stem cells in vitro. Furthermore, several stromal cell lines which are able to support the growth and differentiation of hematopoietic lineage, has been established from LTBMC. Although it is well known that bone marrow stromal cell lines are able to produce colony stimulating factors, it has been suggested that the stromal cell factors which involve membrane bound moieties must have a key role in the regulation of hematopoiesis. We expect that monoclonal antibodies to the surface of bone marrow stromal cells could detect such a critical stroma-associated protein that bounds the cell surface of the bone marrow stroma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号