首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

4.
Low-volume, high-intensity interval training (HIT) increases skeletal muscle mitochondrial capacity, yet little is known regarding potential mechanisms promoting this adaptive response. Our purpose was to examine molecular processes involved in mitochondrial biogenesis in human skeletal muscle in response to an acute bout of HIT. Eight healthy men performed 4 × 30-s bursts of all-out maximal intensity cycling interspersed with 4 min of rest. Muscle biopsy samples (vastus lateralis) were obtained immediately before and after exercise, and after 3 and 24 h of recovery. At rest, the majority of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, a master regulator of mitochondrial biogenesis, was detected in cytosolic fractions. Exercise activated p38 MAPK and AMPK in the cytosol. Nuclear PGC-1α protein increased 3 h into recovery from exercise, a time point that coincided with increased mRNA expression of mitochondrial genes. This was followed by an increase in mitochondrial protein content and enzyme activity after 24 h of recovery. These findings support the hypothesis that an acute bout of low-volume HIT activates mitochondrial biogenesis through a mechanism involving increased nuclear abundance of PGC-1α.  相似文献   

5.
6.
7.
8.
9.
10.
Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.  相似文献   

11.
The induction of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), a key regulator of mitochondriogenesis, is well-established under multiple physical exercise regimens, including, endurance, resistance, and sprint training. We wanted to determine if increased expression of PGC-1alpha in muscle is sufficient to improve performance during exercise in vivo. We demonstrate that muscle-specific expression of PGC-1alpha improves the performance during voluntary as well as forced exercise challenges. Additionally, PGC-1alpha transgenic mice exhibit an enhanced performance during a peak oxygen uptake exercise test, demonstrating an increased peak oxidative capacity, or whole body oxygen uptake. This increased ability to perform in multiple exercise paradigms is supported by enhanced mitochondrial function as suggested by increased mitochondrial gene expression, mitochondrial DNA, and mitochondrial enzyme activity. Thus this study demonstrates that upregulation of PGC-1alpha in muscle in vivo is sufficient to greatly improve exercise performance under various exercise paradigms as well as increase peak oxygen uptake.  相似文献   

12.
The purpose of this study was to elucidate the mechanisms underlying low-intensity exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression in rat skeletal muscles. Rats (5-6 wk old) swam without a load and ran on the treadmill at a speed of 13 m/min, respectively, in two 3-h sessions separated by 45 min of rest. PGC-1alpha content in epitrochlearis muscle (EPI) was increased by 75 and 95%, immediately and 6 h after swimming, respectively, with no increase in PGC-1alpha content in the soleus (SOL). After running, PGC-1alpha content in EPI was unchanged, whereas a 107% increase in PGC-1alpha content was observed in SOL 6 h after running. Furthermore, in EPI and SOL as well as other muscles (triceps, plantaris, red and white gastrocnemius), PGC-1alpha expression was enhanced concomitant with reduced glycogen postexercise, suggesting that expression of PGC-1alpha occurs in skeletal muscle recruited during exercise. PGC-1alpha content in EPI was increased after 18-h in vitro incubation with 0.5 mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and 4 mM caffeine. However, AICAR incubation did not affect PGC-1alpha content in the SOL, whereas caffeine incubation increased it. These results suggest that exercise-induced PGC-1alpha expression in skeletal muscle may be mediated by at least two exercise-induced signaling factors: AMPK activation and Ca2+ elevation. The number of factors involved (both AMPK and Ca2+, or Ca2+ only) in exercise-induced PGC-1alpha expression may differ among muscles.  相似文献   

13.
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session. Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared with WT mice. A single exercise bout increased phosphorylation of AMPK and acetyl-CoA carboxylase-beta and the level of HKII mRNA similarly in WG of KO and WT. In contrast, cyt c mRNA in soleus was upregulated in WT muscles only. Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.  相似文献   

14.
Twenty-one subjects with asthma underwent treadmill exercise to exhaustion at a workload that elicited approximately 90% of each subject's maximal O2 uptake (EX1). After EX1, 12 subjects experienced significant exercise-induced bronchospasm [(EIB+), %decrease in forced expiratory volume in 1.0 s = -24.0 +/- 11.5%; pulmonary resistance at rest vs. postexercise = 3.2 +/- 1.5 vs. 8.1 +/- 4.5 cmH2O.l(-1).s(-1)] and nine did not (EIB-). The alveolar-to-arterial Po2 difference (A-aDo2) was widened from rest (9.1 +/- 6.7 Torr) to 23.1 +/- 10.4 and 18.1 +/- 9.1 Torr at 35 min after EX1 in subjects with and without EIB, respectively (P < 0.05). Arterial Po2 (PaO2) was reduced in both groups during recovery (EIB+, -16.0 +/- -13.0 Torr vs. baseline; EIB-, -11.0 +/- 9.4 Torr vs. baseline, P < or = 0.05). Forty minutes after EX1, a second exercise bout was completed at maximal O2 uptake. During the second exercise bout, pulmonary resistance decreased to baseline levels in the EIB+ group and the A-aDo2 and PaO2 returned to match the values seen during EX1 in both groups. Sputum histamine (34.6 +/- 25.9 vs. 61.2 +/- 42.0 ng/ml, pre- vs. postexercise) and urinary 9alpha,11beta-prostaglandin F2 (74.5 +/- 38.6 vs. 164.6 +/- 84.2 ng/mmol creatinine, pre- vs. postexercise) were increased after exercise only in the EIB+ group (P < 0.05), and postexercise sputum histamine was significantly correlated with the exercise PaO2 and A-aDo2 in the EIB+ subjects. Thus exercise causes gas-exchange impairment during the postexercise period in asthmatic subjects independent of decreases in forced expiratory flow rates after the exercise; however, a subsequent exercise bout normalizes this impairment secondary in part to a fast acting, robust exercise-induced bronchodilatory response.  相似文献   

15.
16.
The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号