首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Detection of Z DNA binding proteins in tissue culture cells.   总被引:3,自引:0,他引:3       下载免费PDF全文
A gel electrophoresis DNA binding assay to detect Z DNA binding proteins has been developed utilising [32P] labelled poly [d(G-C)] which was converted to the Z form by incubation in 100 microM Co(NH3)6Cl3. The parameters of the assay were established using a Z DNA antibody as a model system and then applied to extracts of Hela and BHK21 cells. Using an anti-Z DNA antibody conditions were established which allowed resolution of antibody-DNA complexes and free DNA in the presence of 100 microM Co(NH3)6Cl3. The inclusion of unlabelled complementary homopolymers eliminated non-specific binding to the labelled Z-DNA probe. Competition experiments demonstrated that the assay was highly specific for double stranded non-B DNA. Application of the technique to extracts of mammalian cells demonstrated that human and hamster cells contain Z-DNA binding proteins; further characterisation by a blotting technique indicated that a 56,000 molecular weight cell protein preferentially binds Z-DNA.  相似文献   

3.
4.
We report here that nucleolar and cytoplasmic RNA in mammalian cells is recognized specifically by both experimentally induced monoclonal IgG unique for left-handed Z-RNA and by autoimmune mouse monoclonal IgG specific for ribosomal RNA. Nucleolar Z-RNA synthesis, like nucleolar ribosomal RNA synthesis, is inhibited by actinomycin D treatment and dimethylsulfoxide-induced differentiation. Immune anti-Z-RNA IgGs microinjected into living nuclei bind nucleolar RNA, and these complexes appear to be removed from the nucleus within minutes. Cytoplasmically microinjected monoclonal or polyclonal anti-Z-RNA IgGs specifically bind cytoplasmic RNA and inhibit cell multiplication. Microinjection of antibodies directed against double-stranded RNAs. Elevated ionic conditions, which in energy-minimized models can cause the walls of the groove in Z-RNA (but not Z-DNA) to approach each other and close, also prevent antibody binding to specific synthetic or cellular Z-RNA determinants. Our antibodies binding unique Z-RNA structures probably recognize antigens determined by the exposed 2'-OH ribose sugar-phosphate groups.  相似文献   

5.
Cis-dichlorodiammine platinum (II) has been reacted with synthetic polynucleotides either in B or in Z conformation. The binding of cis-dichlorodiammine platinum (II) stabilizes the Z conformation when reacted with poly (dG-m5dC) ·poly (dG-m5dC) in the Z conformation as shown by circular dichroism and by the antibodies to Z-DNA. On the other hand, the binding of cis-dichlorodiammine platinum (II) stabilizes a new conformation when reacted with poly(dG-dC)·poly(dG-dC) or poly (dG-m5dC)·poly(dG-m5dC) in the B conformation. The antibodies to Z-DNA bind to these platinated polynucleotides. In rabbits, the injection of platinated poly (dG-dC) poly (dG-dC) induces the synthesis of antibodies which recognize Z-DNA. In low salt conditions, the circular dichroism spectra of these platinated polynucleotides differ from those of B-DNA or Z-DNA. The characteristic31P nuclear magnetic resonance spectrum of Z-DNA is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

6.
Antibodies reactive with left-handed Z-DNA arise spontaneously in the sera of patients with SLE and rheumatoid arthritis and in autoimmune MRL mice. However, the precise specificity of these autoantibodies has not been established. In this report, we have characterized four monoclonal anti-Z-DNA antibodies from unimmunized MRL/Mp-lpr/lpr mice that do not cross-react with B-DNA and can discriminate between different types of left-handed helices. Two of the monoclonal antibodies (Za and Zi) behaved similarly in that they bound to two forms of Z-DNA (Br-poly(dG-dC).poly(dG-dC) and AAF-poly(dG-dC).poly(dG-dC) but not to two other Z-form DNA (poly(dG-5BrdC).poly(dG-5BrdC) or poly(dG-5MedC).poly(dG-5MedC)). Neither antibody (Za or Zi) bound significantly to B-DNA or to denatured DNA. A third antibody (Ze) exhibited similar binding characteristics for the Z-DNA preparations, but also recognized denatured DNA. In contrast, a fourth antibody (3-7.3) bound preferentially to poly(dG-5BrC).poly(dG-5BrdC) in Z conformation. These results provide the first evidence for anti-Z-DNA autoantibodies in autoimmune mice that do not cross-react with native or denatured DNA and indicate that these antibodies exhibit considerable heterogeneity in their fine binding specificity.  相似文献   

7.
Summary Antibodies against Z-DNA react with fixed metaphase chromosomes of man and other mammals. Indirect immunofluorescence staining shows that chromosomal segments corresponding to R- and T-bands preferentially fix Z-DNA antibodies. In this work Z-DNA antibodies were used as a probe for DNA conformation in euchromatin of fixed human chromosomes whose condensation or staining were modified by actinomycin D (AMD) and by 5-bromodeoxyuridine (BrdU). Treatments with AMD and BrdU were performed to induce a G-banding by modification of chromosomal segments corresponding to R- and T-bands. Long BrdU treatments were used to induce asymmetrical and partially undercondensed chromosomes by substitution of thymidine in one or both DNA strand. Our results show a clear difference of Z-DNA antibodies reactivity after AMD or BrdU treatment. The G-banding obtained after AMD treatment is not reversed by Z-DNA antibodies staining since these antibodies bind very weakly to the undercondensed R-bands. On the other hand, the G-banding obtained by BrdU is completely reversed giving typical R-banding, as on untreated chromosomes. For asymmetrical chromosomes an R-, T-banding pattern is always observed but there is a decrease of the fluorescence intensity proportional to the degree of BrdU incorporation. We conclude that AMD treatment greatly disturbs Z-DNA antibodies binding suggesting a change in DNA conformation, whereas BrdU treatments do not suppress but only weaken the specific binding of Z-DNA antibodies on R- and T-bands. The direct involvement of thymidine substitution in DNA sequences recognized by Z-DNA antibodies is discussed.  相似文献   

8.
The first crystal structure of a protein, the Z alpha high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to Z alpha(ADAR). Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 A resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein-DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.  相似文献   

9.
F Azorin  A Nordheim    A Rich 《The EMBO journal》1983,2(5):649-655
Negative supercoiling of the plasmid pBR322 with or without an insert of (dG-dC)n induces the formation of Z-DNA as measured by the binding of antibodies specific for Z-DNA. Increasing the concentration of Na+ (or K+) is shown to inhibit the B to Z-DNA conversion. This may be due to the effect of the cation on the B-Z junction. Using the data for B to Z-DNA conversion of the (dG-dC)n inserts, we have estimated the free energy change per base pair as well as the energy of the B-Z junction. In pBR322, a 14-bp segment [CACGGGTGCGCATG] is believed to form Z-DNA at bacterial negative superhelical densities under salt conditions which are similar to those found in vivo.  相似文献   

10.
The cDNA for H and L chain V regions of two anti-Z-DNA mAb, Z22 and Z44, were cloned and sequenced. These are the first experimentally induced anti-nucleic acid antibody sequences available for comparison with autoantibody sequences. Z22 and Z44 are IgG2b and IgG2a antibodies from C57BL/6 mice. They recognize different facets of the Z-DNA structure. They both use VH10 family genes and share 95% sequence base sequence identity in the VH and leader sequences; however, they differ in the 5'-untranslated region of the VH mRNA, indicating they arise from different germline genes. Both use JH4 segments. They differ from each other very extensively in the CDR3 of both H and L chains. The most closely related H chains in the current GenBank/EMBL data base are two mouse IgG anti-DNA autoantibodies, one from an MRL-lpr/lpr mouse (MRL-DNA4) and one from an NZB/NZW mouse (BV04-01). Z22 and Z44 share 95% sequence identity with these antibodies in the VH segment. In addition, Z22 is identical to MRL-DNA4 at 91% of the positions in the 5'-untranslated region of the H chain mRNA. The two antibodies share 95% base sequence identity in the V kappa segment. The most closely related L chains, with 97 to 98% sequence identity, are the V kappa 10b germline gene for Z22 and the V kappa 10a germ line gene, which is associated with A/J anti-arsonate antibodies and BALB/c anti-ABO blood group substance antibodies, for Z44. Z22 and Z44 share several structural features (similarities in VH, JH, and V kappa) but differ very markedly in the L chain CDR1 and both H and L chain CDR3 sequences; these regions may determine the differences in their specific interactions with Z-DNA.  相似文献   

11.
12.
Searching for potential Z-DNA in genomic Escherichia coli DNA   总被引:3,自引:0,他引:3  
The Clarke-Carbon library with Escherichia coli DNA cloned into plasmid ColE1 was partially screened for Z-DNA with the monoclonal antibody Z-D11 using the retardation of the covalently closed circular DNA-protein complex by nitrocellulose filters. About 85% of the plasmids tested at "natural" supercoil density bound to the filter. Together with binding studies of the iodinated antibody, one Z-DNA segment per about 18,000 base-pairs of E. coli DNA is observed. One clone containing the region around the lactose operon, pLC20-30, was studied in detail. Subcloning a partial Sau3A digest and selection with antibodies gave three different Z-forming sites. They were mapped to within about +/- 20 base-pairs by preparing unidirectional deletion clones, selection of protein binding plasmids on nitrocellulose filters and subsequent sizing on agarose gels. The size of the Z-DNA-forming segments was estimated from two-dimensional gels of topoisomer mixtures. Together with results from sequencing of the plasmid DNA using exonuclease III to create single-stranded templates, stretches of alternating purine-pyrimidine tracts of 12 to 15 base-pairs were found to be responsible for Z-DNA formation. One of the sites was found in the middle of the lacZ gene, where it might be an obstacle for RNA polymerase. The methods used here should also be helpful for studying other DNA-protein sites, especially if they exist only in supercoiled DNA.  相似文献   

13.
The conformational changes induced by the binding of cis-diamminedichloroplatinum(II) to poly(dG-dC).poly(dG-dC) have been studied by reaction with specific antibodies, by circular dichroism and 31P nuclear magnetic resonance. Polyclonal and monoclonal antibodies to Z-DNA bind to platinated poly(dG-dC).poly(dG-dC) at low and high ionic strength. Antibodies elicited in rabbits immunized with the platinated polynucleotide bind to double stranded polynucleotides known to adopt the Z-conformation. At low and high ionic strength the circular dichroism spectrum of platinated poly(dG-dC).poly(dG- dC) does not resemble that of poly(dG-dC).poly(dG-dC) (B or Z conformation). At low ionic strength, the characteristic 31P nuclear magnetic resonance spectrum of the Z-form is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

14.
Isolation and characterization of Z-DNA binding proteins from wheat germ   总被引:11,自引:0,他引:11  
E M Lafer  R Sousa  B Rosen  A Hsu  A Rich 《Biochemistry》1985,24(19):5070-5076
The preparation of a heterogeneous non-histone protein extract from wheat germ utilizing Br-poly(dG-dC).poly(dG-dC) (Z-DNA) affinity chromatography is described. The binding characteristics of antibodies against Z-DNA are used as a model system to define important criteria that the DNA binding behavior of a Z-DNA binding protein should display. We show that the wheat germ extract contains DNA binding proteins specific for left-handed Z-DNA by these criteria. The affinity of the proteins measured by competition experiments was approximately 10(5) greater for Br-poly(dG-dC).poly(dG-dC) (Z-DNA) than for poly(dG-dC).poly(dG-dC) (B-DNA). The affinity of the proteins for plasmid DNA increases with increasing negative superhelicity which is known to stabilize Z-DNA. The proteins are shown to compete with Z-DNA antibodies for binding to supercoiled plasmids. Finally, the affinity for two plasmids at a given superhelical density is greater for the plasmid containing an insert known to form Z-DNA than for a plasmid without the insert. The proteins exhibit a 2-3-fold greater affinity for stretches of (dC-dA)n.(dT-dG)n over stretches of (dG-dC)n.(dG-dC)n when both sequences are induced to form Z-DNA by supercoiling.  相似文献   

15.
An in situ hybridization procedure, based on the chemical modification of DNA by acetylaminofluorene (AAF), followed by a specific immunoreaction was used to localize a Z-DNA sequence isolated from the satellite DNA of Cebus appella. The AAF probe is localized on the R-band-positive heterochromatic segments of Cebus chromosomes, which strongly react with Z-DNA antibodies. The use of a nonradioactive single-stranded labeled probe confirms the reliability and the rapidity of immunochemical methods for the detection of DNA sequences on chromosomes.  相似文献   

16.
Antibodies to DNA   总被引:18,自引:0,他引:18  
Antibodies that recognize specific conformational variations of DNA structure provide sensitive reagents for testing the extent to which such conformational heterogeneity occurs in nature. A most dramatic recent example has been the development and application of antibodies to left-handed Z-DNA. They provided the first identification of Z-DNA in fixed nuclei and chromosomes, and of DNA sequences that form Z-DNA under the influence of supercoiling. Antibodies have also been induced by chemically modified DNA and by synthetic polydeoxyribonucleotides that differ from the average B-DNA structure. These antibodies recognize only the features that differ from native DNA. In most experiments, native DNA itself is not immunogenic. Antibodies that do react with native DNA occur in sera of patients with autoimmune disease, but even monoclonal anti-DNA autoantibodies usually react with other polynucleotides as well. Anti-DNA antibodies, especially those of monoclonal origin, provide a model for the study of protein-nucleic acid recognition.  相似文献   

17.
Five different DNA fragments have been treated with a range of conformationally sensitive reagents in an effort to probe structural changes in DNA associated with binding of the bis-intercalating antibiotic echinomycin. For each probe, the intensity and pattern of its reactivity with DNA have been analyzed in order to elucidate the effect of antibiotic binding on the accessibility of a specific site or sites to chemical attack. It was found that in one of the DNA fragments, pTyr2 DNA, several purine residues exhibit enhanced reactivity to diethyl pyrocarbonate (DEPC) in the absence of bound antibiotic, and that this strongly sequence specific reaction is enhanced in the presence of quite low echinomycin concentrations. The echinomycin-dependent reactivities towards DEPC of three homologous DNA fragments, chosen for their subtly different antibiotic binding characteristics, were also investigated. It was found that small changes in base sequence generate striking changes in susceptibility to modification by DEPC. The abolition of one antibiotic binding site leads to the creation of a new, intense DEPC-reactive site. In the presence of moderate concentrations of echinomycin, specific thymidine residues exhibit enhanced reactivity towards osmium tetroxide. No differences in the reactivities of the DNA fragments towards bromoacetaldehyde, S1 nuclease, dimethyl sulphate or potassium tetrachloropalladinate were observed in the presence of the antibiotic. DEPC reactions were performed on tubercidin (7-deaza-adenosine) to determine the DEPC reactive positions in situation where N-7 is inaccessible. Tubercidin was found to be generally resistant to attack by DEPC followed by treatment with base. We conclude that the bulk of structural changes induced by the binding of echinomycin to DNA do not involve Hoogsteen base pairing, but rather are due to sequence-specific unwinding of the helix in a manner which is strongly dependent on the nature of surrounding nucleotide sequences.  相似文献   

18.
The Zab domain of the editing enzyme ADAR1 binds tightly and specifically to Z-DNA stabilized by bromination or supercoiling. A stoichiometric amount of protein has been shown to convert a substrate of suitable sequence to the Z form, as demonstrated by a characteristic change in the CD spectrum of the DNA. Now we show that Zab can bind not only to isolated Z-forming d(CG)(n) sequences but also to d(CG)(n) embedded in B-DNA. The binding of Zab to such sequences results in a complex including Z-DNA, B-DNA, and two B-Z junctions. In this complex, the d(CG)(n) sequence, but not the flanking region, is in the Z conformation. The presence of Z-DNA was detected by cleavage with a Z-DNA specific nuclease, by undermethylation using Z-DNA sensitive SssI methylase, and by circular dichroism. It is possible that Zab binds to B-DNA with low affinity and flips any favorable sequence into Z-DNA, resulting in a high affinity complex. Alternatively, Zab may capture Z-DNA that exists transiently in solution. The binding of Zab to potential as well as established Z-DNA segments suggests that the range of biological substrates might be wider than previously thought.  相似文献   

19.
Left-handed Z-DNA is radically different from the most common right-handed B-DNA and can be stabilized by interactions with the Zα domain, which is found in a group of proteins, such as human ADAR1 and viral E3L proteins. It is well-known that most Zα domains bind to Z-DNA in a conformation-specific manner and induce rapid B–Z transition in physiological conditions. Although many structural and biochemical studies have identified the detailed interactions between the Zα domain and Z-DNA, little is known about the molecular basis of the B–Z transition process. In this study, we successfully converted the B–Z transition-defective Zα domain, vvZαE3L, into a B–Z converter by improving B-DNA binding ability, suggesting that B-DNA binding is involved in the B–Z transition. In addition, we engineered the canonical B-DNA binding protein GH5 into a Zα-like protein having both Z-DNA binding and B–Z transition activities by introducing Z-DNA interacting residues. Crystal structures of these mutants of vvZαE3L and GH5 complexed with Z-DNA confirmed the significance of conserved Z-DNA binding interactions. Altogether, our results provide molecular insight into how Zα domains obtain unusual conformational specificity and induce the B–Z transition.  相似文献   

20.
mAb Z22 is a highly selective IgG anti-Z-DNA Ab from an immunized C57BL/6 mouse. Previous studies showed that heavy chain CDR3 amino acids are critical for Z-DNA binding by the single chain variable fragment (scFv) comprising both V region heavy chain (VH) and V region light chain (VL) of mAb Z22 and that the VH domain alone binds Z-DNA with an affinity similar to that of whole variable fragment (Fv). To determine whether Z-DNA binding by VH alone and by Fv involves identical complementarity determining region residues, we tested effects of single or multiple amino acid substitutions in recombinant VH, scFv, and associated VH-VL heterodimers. Each recombinant product was a fusion protein with a B domain of Staphylococcal protein A (SPA). Z22VH-SPA alone was not highly selective; it bound strongly to other polynucleotides, particularly polypyrimidines, and ssDNA as well as to Z-DNA. In contrast, scFv-SPA or associated VH-VL dimers bound only to Z-DNA. VL-SPA domains bound weakly to Z-DNA; SPA alone did not bind. Introduction of multiple substitutions revealed that the third complementarity determining region of the heavy chain (CDR3H) was critical for both VH and scFv binding to Z-DNA. However, single substitutions that eliminated or markedly reduced Z-DNA binding by scFv instead caused a modest increase or no reduction in binding by VH alone. Association of VH-SPA with Z22VL-SPA restored both the effects of single substitutions and Z-DNA selectivity seen with Fv and intact Ab. Polypyrimidine and ssDNA binding by the isolated VH domain of immunization-induced anti-Z-DNA Ab resembles the activity of natural autoantibodies and suggests that VH-dependent binding to a ligand mimicked by polypyrimidines may play a role in B cell selection before immunization with Z-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号