首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Damage in the older needles of Norway spruce [Picea abies (L.) Karst.] in the Fichtelgebirge (NE Bavaria, FRG) appears to result primarily from nutrient imbalances rather than from direct effects of air pollutants on the mesophyll of the needles. Support for this conclusion was obtained by altering the nutrition of older needles through the removal of terminal buds on several branches from a damaged and an undamaged spruce tree in spring. Various photosynthetic parameters, as well as the chloroplast pigment and nutrient concentrations, of 1- to 3-year-old needles on manipulated branches were compared with those of branches on which the new flush was allowed to develop during the course of the growing period. Removal of terminal buds affected only the 1-year-old needles. Elimination of the new flush resulted in a higher Ca and Mn content of the needles of the undamaged tree. This treatment also resulted in an increase of the photosynthetic capacity (under saturating light and CO2 conditions), carboxylation and light use efficiency, as well as net photosynthesis under natural conditions of the 1-year-old needles on the yellow chlorotic tree. This was accompanied by higher chlorophyll concentrations and an increase in Mg, Ca, Mn, and Zn content, and no visible signs of chlorosis developed in the experiment. By contrast, the needles of twigs in which the new flush was allowed to develop exhibited reductions in mineral content in the middle of the year. This was especially true for the elements Mg and Ca, and was accompanied by needle chlorosis and a depression of the capacity of photosynthesis. Thus it appears that there is a close relationship between the development of needle damage and nutrient imbalances in spruce. The retranslocation of elements from the 1-year-old needles to the new flush seems to play a major role in the development of needle bleaching. This approach thus supports the hypothesis described above and confirms a preliminary test with a similar experimental design, which had been conducted earlier.  相似文献   

2.
Summary CO2- and H2O-gas exchange of 20- to 25-year-old spruce trees from a plantation in the Hunsrück mountains were investigated over a period of 3 years. All measurements were made as pair comparisons, i.e., in each case the gas exchange of a damaged tree and of a relatively healthy tree in its immediate vicinity was measured simultaneously. A second plantation in the Westerwald mountains consisted of 18-year-old apparently healthy spruce trees. Pair comparison at this location meant comparison of two healthylooking trees. The investigations at both locations included diurnal course measurements of photosynthesis and transpiration, and light saturation curves and CO2-saturation curves of photosynthesis. The reduced photosynthesis parameters of the phenotypically damaged trees at the Hunsrück location indicates massive damage to the photosynthetic apparatus. Measurements of H2O-gas exchange showed that there are disturbances in stomatal regulation of the needles of damaged trees. As a result, the water use efficiency of these needles proved to be significantly lower. In addition, apparent photorespiration of the damaged trees was decreased, whereas their light- and CO2-compensation points and their dark respiration were increased. In contrast to the Hunsrück plantation, no such effects were detectable when the healthy-looking Westerwald trees were subjected to pair comparison of gas exchange. Reduced photosynthetic capacity and disturbances of the stomatal regulation of the phenotypically damaged Hunsrück trees may be due to damage in the cellular membranes. Furthermore, a comparison of three growing seasons led to the conclusion that the gas exchange of spruce trees in their natural habitat is markedly influenced by climatic conditions.  相似文献   

3.
Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol–1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol–1 year–1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.  相似文献   

4.
Red pines Pinus resinosa in Garrett and Allegany counties, Maryland, were examined during 1982-84 to determine distribution of the pinewood nematode, Bursaphelenchus xylophilus, within and among trees. Approximately 25-year-old (younger) and 47-year-old (older) trees were subdivided into the following categories: 1) trees with mostly green needles; 2) trees with mostly reddish-brown needles; 3) trees lacking needles but with bark intact; 4) trees lacking both needles and bark; and 5) trees with chlorotic, bleached-green needles. Bursaphelenchus xylophilus was found infecting 68% of younger red pines and 77% of older red pines. Nematodes were not evenly distributed in trees within any given tree decadence category or in trees of the same age. Nematodes were recovered from 20% of wood samples from trunks and primary and secondary branches in younger pines and from 15 % of older red pines. On the basis of tree decadence category, the highest incidence of infection in younger trees (31%) was in bleached-green needled trees (category 5), whereas in older trees the highest infection (25%) occurred in green needled trees (category 1). At both sites trunks were infected more often than branches.  相似文献   

5.
Summary Monoterpenes in needles of Picea abies (L.) Karst. were studied to reveal whether or not the symptoms of forest decline observed in three mountain regions of South Germany (Bavaria) — needle loss and needle yellowing — are related to changes in the amounts of all or individual terpenes. The nutrient supply of the needles was examined in addition to the terpene concentrations, since the disease symptom montane yellowing is often associated with mineral deficiency. At two of the eight locations, trees exhibited Mg-deficiency, at one location K-deficiency was observed, and at another location the S-content of the needles indicated SO2-pollution. Using various statistical methods of analysis, no correlation was observed between the mineral element content of the needles, the percentage of needle loss and either the absolute or percentile terpene amounts stored within the needles. This finding is independent of needle age, date of sampling and terpene pattern. Concerning needle yellowing, the data show a tendency towards a reduction of the terpene concentrations in needles originating from branches with partly yellow needles compared to needles from exclusively green-needled branches. In spite of the fact that only 2-year-old and older needles show the disease symptom of yellowing, the terpene level is reduced even in still green, juvenile and 1-year-old needles. No terpene was found to be an indicator for early recognition of injury.  相似文献   

6.
We examined the effects of simulated folivory by caterpillars on photosynthetic parameters and nitrogen (N) resorption efficiency in Quercus pyrenaica saplings. We analyzed the differences between intact leaves in control plants, punched leaves in damaged plants, and intact leaves in damaged plants. We then established two levels of simulated folivory: low (≈13% of the leaf area of one main branch removed per plant) and high (≈26% of the leaf area of one main branch removed per plant) treatments. No differences were found in net assimilation rate and conductance between either leaf type or treatment during the most favourable period for photosynthesis. However, the N content was lower in punched than in intact leaves, and as a result PNUE was higher in damaged leaves from treated trees. In leaf-litter samples, N mass was significantly higher in punched than in intact leaves in treated plants, and LMA was significantly higher in damaged than in intact leaves of both the treated and control plants. Consequently, N resorption efficiency was around 15% lower in damaged leaves as compared with intact leaves from treated and control plants. Mechanical injury to leaves not only triggered no compensatory photosynthetic response to compensate a lower carbon uptake due to leaf area loss, but also affected the resorption process that characterizes leaf senescence.  相似文献   

7.
Autocorrelation--correlation of tree-ring parameters such as ring width, density and isotope ratios to the environmental conditions of the previous year(s)--is associated with the use of previous photoassimilate for current year's tree ring formation. To clarify the seasonal course of carbon allocation patterns among needles, branches, stem and roots, we pulse-labeled 10 Larix gmelinii growing in a continuous permafrost zone with 13CO2. Photoassimilate incorporated in June was allocated mainly to above-ground parts, indicating active above-ground growth in spring. Very little was allocated to below-ground parts (2.6-7.9%), probably because root growth is inhibited by low soil temperatures in spring. Conversely, a higher proportion of July and August photoassimilate was allocated to below-ground parts (32-44 and 12-24%, respectively). About half the carbon in new needles was derived from stored material. The starch pool in non-needle parts, which can be used for xylem formation, drew approx. 43% of its carbon from the previous year's photoassimilate, indicating that carbon storage is a key mechanism behind autocorrelation in (isotope) dendroclimatology.  相似文献   

8.
Summary In a forest decline area (Fichtelgebirge, N.E. Bavaria, FRG), annual time courses of chloroplast pigments in both healthy and chlorotic Norway spruce were studied. The seasonal time courses of green and apparently healthy trees did not generally differ from those reported in the literature for spruce trees of other regions. Chlorophyll content increased from May to October, remained relatively constant or declined slightly during the fall and early winter, and finally decreased markedly from March to early May when pigment is at its minimum before bud break. The annual maximal chlorophyll content increased with needle age from the current year's needles to 4-yearold needles. While carotene content reached its highest concentration in August, the xanthophylls did not peak until February or March. Pigment dynamics of chlorotic trees with lower concentrations, corresponded to those of undamaged trees. Chlorophyll deficits resulted from less pigment formation as well as pigment loss during the growing period. Even when the content of total chlorophyll was low, the ratio of chlorophyll a/chlorophyll b remained almost unchanged. In conjunction with the chlorophyll reductions, a decrease in the chlorophyll/carotenoid ratio and an increase in the xanthophyll/carotene ratio occurred. The periods of needle-chlorophyll reduction did not correlate with those periods of highest concentrations of atmospheric sulphur dioxide, the main air pollutant at the stand. However, chlorophyll formation ceased in the older needle age classes of chlorotic trees when the new flush was sprouting, indicating that nutritional deficiencies affect needle yellowing more than possible direct needle damage by air pollutants.  相似文献   

9.
Summary Routine field determination of the parameters characterizing the activity of the photosynthetic apparatus is often difficult when attached branches of tall trees have to be used for gas exchange measurement. If severed twigs could be used, determining these parameters would be greatly facilitated. Because stomatal conductance changes when twigs or leaves are detached, CO2 assimilation is usually altered. Thus, measurements made at ambient CO2 concentration fail to accurately assess the activity of the photosynthetic apparatus because photosynthetic rates greatly depend on the supply of carbon dioxide. However, when photosynthetic carboxylation reactions are saturated by increased CO2 partial pressure in the mesophyll, CO2 assimilation rates no longer depend on instantaneous stomatal conductance, as shown by gas exchange measurements of spruce (Picea abies) twigs prior to and following detachment. Because net photosynthesis following detachment at saturating CO2 remains constant for a minimum of 15 min, photosynthetic measurements of severed twigs may be reliable. This length of time is sufficient for detaching and recutting the twig, assembling a portable minicuvette system, re-establishing steady-state conditions with the gas analyser system, and reading the data over a reasonable period of time. The method described measures the maximal photosynthetic CO2 assimilation of spruce needles of a single age-class from detached spruce twigs under the following conditions: saturating light, saturating external CO2-partial pressure, standardized temperature and air humidity in the field. The method is applicable as a routine procedure to characterize the status of the photosynthetic apparatus of spruce trees that may be damaged in the process of forest decline.  相似文献   

10.
Summary Under high atmospheric humidity, Rhodes grass plants responded favourably to an increase in nitrate fertilization. Under low atmospheric humidity an optimum point was reached at lower N-treatment.Plants' growth was improved by a salinity treatment of up to 100 mM, at high atmospheric humidity. A higher salt concentration cancelled the favourable effect of added nitrate.The rise in yield which follows salt or nitrate treatments is apparently combined with an increase in activity of the key photosynthetic enzymes, Phosphoenol pyruvate carboxylase and Ribulose biphosphate carboxylase. A similar rise in activity is seen in nitrate reductase, a key enzyme in nitrogen metabolism. Evidently, all three enzymatic systems are not damaged in high salt treatments, and the potential photosynthetic capacity remained practically uneffected in all treatments. As no correlation could be found between transpiration and growth curves, it is assumed that the supply of CO2 is also unhampered. Thus, the major negative effect of salinity, seems to be on protein synthesis, which eventually leads to disturbed growth.Agricultural Research Organization. The Volcanic Center.  相似文献   

11.
The Climate Change Experiment (CLIMEX) is a unique large scale facility in which an entire undisturbed catchment of boreal vegetation has been exposed to elevated CO2 (560 ppm) and temperature (+3°C summer, +5°C winter) for the past three years with all the soil-plant-atmosphere linkages intact. Here, carbon isotope composition and stomatal density have been analysed from sequential year classes of needles of mature Scots pine trees (Pinus sylvestris L.) to investigate the response of time-integrated water-use efficiency (UWE) and stomatal density to CO2 enrichment and climate change. Carbon isotope discrimination decreased and WUE increased in cohorts of needles developing under increased CO2 and temperature, compared to needles on the same trees developing in pretreatment years. Mid-season instantaneous gas exchange, measured on the same trees for the past four years, indicated that these responses resulted from higher needle photosynthetic rates and reduced stomatal conductance. Needles of P. sylvestris developing under increased CO2 and temperature had consistently lower stomatal densities than their ambient grown counterparts on the same trees. The stomatal density of P. sylvestris needles was inversely correlated with δ13C-derived WUE, implying some effect of this morphological response on leaf gas exchange. Future atmospheric CO2 and temperature increases are therefore likely to improve the water economy of P. sylvestris, at least at the scale of individual needles, by affecting stomatal density and gas exchange processes.  相似文献   

12.
An experimental study was undertaken to assess the extent to which better-situated branches correlatively inhibit other branches on the same plant which are growing in relatively inferior conditions. The experiments were carried out on naturally-grown Onobrychis squarrosa L. (Papilionaceae), a dominant annual plant of the Mediterranean region of Israel. Treatments were carried out (i) on young plants that only had a seminal shoot, and (ii) on plants after lateral branches had started growing. Differential shade conditions were achieved by the repeated removal of neighbours on one side of the plants. The plants were either left intact or damaged by removing different parts of their branch system. In intact plants, growth responses to the differential light conditions which were expressed by the number of branches, leaves and fruits showed some evidence for support of the shaded branches by the exposed branches on the same plant. In contrast, heterogeneous treatments of both shade and branch damaging led to development that reflected marked correlative inhibition of the shaded parts of the plant. The results show that a latent potential for correlative inhibition between branches exists throughout plant development and that in Onobrychis it can be readily realised when plants are damaged. This could depend on known traits of auxin acting as a correlative signal of growing branches. The observed responses of Onobrychis can be understood as an adaptive strategy which reflects the low reliability of environmental signals and the high cost of changing the course of development, especially in short-lived annual plants.  相似文献   

13.
Mehne-Jakobs  Beate 《Plant and Soil》1995,168(1):255-261
In order to investigate the influence of different magnesium nutrition on photosynthesis, one hundred 6-year-old spruce trees derived from one clone were planted in October 1990 into a special out-door experimental construction, where they were cultivated in sand culture with an optimal supply of nutrients, except magnesium, via circulating nutrient solutions. Magnesium was added to the nutrient solutions in three different concentrations, varying from optimal to severe deficient supplies. During the first vegetative period in 1991, photosynthetic performance and carboxylation efficiency were measured under saturating light, controlled CO2 conditions, optimal temperature and humidity, using a minicuvette system.During summer, the trees under moderate magnesium deficiency developed tip yellowing symptoms on older needles, while the youngest needles remained green with unchanged chlorophyll contents. Trees under severe magnesium deficiency showed yellowing symptoms on all needle age classes combined with decreased chlorophyll contents in the youngest needles as well. In comparison with the controls, the photosynthetic performance of the 1-year-old needles was significantly lower in both deficiency treatments. The same was observed in the youngest needles of the trees under severe deficiency. Trees under moderate deficiency treatment decreased in photosynthetic performance during the summer without reduction of chlorophyll contents. The reduction of photosynthetic rates corresponded to a decrease in carboxylation efficiency, which is taken as a measure of the activity of the enzyme ribulose-1,5-bisphosphate carboxylase. This reduction, together with the observed increase of carbohydrate contents in needles of trees growing under magnesium deficiency, led to the assumption that the photosynthetic carbonfixation is reduced as a consequence of the accumulation of carbohydrates.  相似文献   

14.
The effects of partial debudding on photosynthesis, stomatal conductance and nitrogen contents of 1-year-old needles and newly grown needles were studied in Picea jezoensis (Sieb. et Zucc.). Seventy-five percent of the buds of P.jezoensis seedlings were removed soon after bud break. Gas exchange was measured three times for 1-year-old needles and twice for current-year needles. The photosynthetic rates of 1-year-old needles were greater in debudded seedlings than in control seedlings, and the difference increased as the growing season progressed. This greater photosynthetic rate in debudded seedlings was accompanied by greater stomatal conductance. However, neither the photosynthetic rates nor the stomatal conductance of current-year needles differed between debudded and control seedlings after the needles had fully expanded. Debudding also had no effect on mass-based nitrogen contents in either the 1-year-old or the current-year needles. Area-based nitrogen in the 1-year-old needles did not differ between debudded and control seedlings, but was greater in debudded seedlings than in control seedlings in current-year needles. These results suggest that the enhanced photosynthetic rate is more likely a result of an increased root/leaf ratio that reduces the stomatal limitation of photosynthetic rate than a result of altered sink-source relationships or increased leaf nitrogen content.  相似文献   

15.
Summary Photosynthetic performance of several needle age classes of Norway spruce trees [Picea abies (L.) Karst.] in highly SO2-polluted and heavily damaged forest sites was measured at two different locations in the Ore Mountains (Erzgebirge, Krusne Hory) during early summer. The carboxylation efficiency showed a dramatic drop from current-year's needles to 1-year-old needles with only a slight further decrease with increased needle age. The light use efficiency also revealed these characteristics. For both parameters, no linear decrease with needle age could be found. In contrast, the maximum photosynthetic capacity (A2500) decreased linearly with time and revealed a good correlation with the total sulfur content of the needles. Absolute values measured for A2500 were approximately 50% lower than those of comparable trees in the nearby Fichtelgebirge. Mineral deficiencies or acute nutrient imbalances of the needles were not detected. In contrast to the situation in the forests of the Fichtelgebirge, a direct effect of gaseous SO2 on the trees in the Ore Mountains seems plausible.This paper is dedicated to our teacher Professor Otto Ludwig Lange on the occasion of his 65th birthday  相似文献   

16.
The pine caterpillar Dendrolimus punctatus (Walker) with a larval facultative diapause is one of the most destructive insect pests of the pine tree Pinus massoniana in China. The larvae feeding on pine trees with different damage levels were studied to determine the induction of diapause under both laboratory and field conditions. Developmental duration of larvae before the third instar was the longest when fed with 75%–90% damaged needles, followed by 25%–40% damaged needles and intact pine needles, whereas mortalities did not differ among different treatments under the conditions of 25° and critical photoperiod 13.5:10.5 L:D. At 25°, no diapause was induced under 15:9 L:D, whereas 100% diapause occurred under 12:12 L:D regardless of the levels of needle damage. Incidences of larvae entering diapause when they were fed with intact, 25%–40% and 75%–90% damaged pine needles were 51.7%, 70.8% and 81% under 13.5:10.5 L:D, respectively. Similar results were obtained in the field experiment. Incidence of diapause was significantly different among the pine needle damage levels of pine trees when the photoperiod was close to the critical day length, indicating that the effect of host plants on diapause induction was dependent on the range of photoperiod. The content of amino acid and sugar decreased and tannin increased in pine needles after feeding by the pine caterpillars, suggesting that changed levels of nutrients in damaged needles or a particular substance emitted by damaged pine trees was perhaps involved in the diapause induction of the pine caterpillar.  相似文献   

17.
Photoacoustic spectra were measured at chopping frequencies of the excitation light at 22 and 515 Hz in order to detect differences between needles from healthy and damaged conifers ( Abies alba Mill, and Picea abies Karst.) with respect to pigment distribution and possibly also to photosynthetic activity. Fully green needles of healthy trees exhibit photoacoustic spectra at 22 Hz with a maximum in the red absorption region of the chlorophyll. This maximum is lost with increasing damage to needles and chlorophyll breakdown. The photoacoustic spectra at 22 Hz of the damaged needles therefore are characterized by a higher signal in the blue-light region as compared to that in the red-light region. This can be quantified by forming the ratio of the photoacoustic signals at 675 and 475 nm (ratio PA 675/475). The needles of the damaged trees possess a lower photosynthetic activity, as seen from the CO2 fixation rate and the variable fluorescence (Rfd-values). It is assumed that the changes in the PA-spectra of the needles from damaged trees are the result of this decline of the photosynthetic apparatus and its function. In contrast to the PA-spectrum at 22 Hz the PA-spectra at 515 Hz, where the PA-signals primarily emanate from the epidermal layer, exhibit a different shape with a maximum near 550 nm. In the needles from the damaged trees the PA-signals are higher, particularly in this maximum range of the spectrum, than those of fully green needles from healthy trees.  相似文献   

18.
Nitrogen metabolism of the needles of 40-year-old Douglas fir and Scots pine trees, growing in two forest stands on cation-poor and acidic sandy soil with a relatively high atmospheric nitrogen deposition was studied. The composition of the free amino acid (FAA) pool, the concentrations of total nitrogen and soluble protein and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were determined in the needles. An excessive nitrogen supply by a high atmospheric nitrogen deposition in both forest stands was indicated by the high concentrations of total nitrogen and the amino acids arginine, glutamic acid, glutamine and aspartic acid in control trees. In addition the effect of optimal nutrition and water supply (fertigation) on the needle nitrogen metabolism was evaluated. The total concentration of the FAA pool in needles of both tree species was lower in the fertigated than in the non-fertigated (control) trees, except for 1-year-old needles of Scots pine, in which the concentration after fertigation did not differ from the control. The lower total FAA concentration in the fertigated trees could be attributed to arginine, the concentration of which was on average 60% lower than in the control. Neither the concentration of soluble protein nor the activity of GS were influenced by fertigation. The activity of GDH in fertigated trees only differed significantly from the control in October. Scots pine needles had higher concentrations of protein (50%) and higher activities of GS (44%) and GDH (25%) than Douglas fir needles. Possible explanations for the lower vitality of Douglas fir compared to Scots pine are given.  相似文献   

19.
Ecological indicators provide early warning of adverse environmental change, helping land managers adaptively manage their resources while minimizing costly remediation. In 1999 and 2000, we studied two such indicators, growth and developmental instability, of loblolly pine (Pinus taeda L.) influenced by mechanized infantry training at Fort Benning, Georgia. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We hypothesized that disturbance would decrease the growth of needles, branches, and tree rings, increase the complexity of tree rings, and increase the developmental instability of needles. Contrary to our expectations, however, disturbance enhanced growth in the first year of the study, possibly by reducing competition. In the second year, a drought reduced growth of branches and needles, eliminating the stimulatory effect of disturbance. Growth-ring widths increased with growing-season precipitation, and decreased with growing-season temperature over the last 40 years. Disturbance had no effect on tree-ring complexity, as measured by the Hurst exponent. Within-fascicle variation of current-year needle length, a measure of developmental instability, differed among the study populations, but appeared unrelated to mechanical disturbance or drought.  相似文献   

20.
In order to compare the effects of excess pedospheric and atmospheric nitrogen supply on nitrate reductase activity (NR. EC 1.6.6.1) excised spruce branches were exposed to nitrate solutions or were fumigated with NO2. Immersion of spruce branches in 6 mM nitrate caused an increase in NR activity by a factor of 14 or 19 in current-year and in one-year-old needles, respectively, as compared to controls incubated in tap water. Exposure to 65 nl I?1 NO2 increased NR activity by a factor of 1.5 in current-year needles and by a factor of 2.5 in one-year-old needles as compared to non-fumigated controls. Addition of cycloheximide (0.17 μM) or puromycin (200 μM) to the incubation solution prevented the induction of NR activity from both nitrate and NO2 exposure. This finding indicates that induction of NR activity by both atmospheric NO2 or increased nitrate supply of the needles is both caused by de-novo synthesis of NR protein. The increase in NR activity in needles of branches still attached to the tree as a consequence of exposure to 65 nl I?1 NO2 was found to be a transient phenomenon. The increase persisted for several days only and was no longer observed after one week of sustained NO2 exposure. An interruption of phloem transport by girdling, applied subsequent to the induction of NR activity by atmospheric NO2, prevented the decrease in NR activity. Apparently, export out of the exposed needles and phloem transport within the stem are involved in the regulation of NR activity upon NO2 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号