首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

3.
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.  相似文献   

4.
Granule-bound starch synthase (GBSS) catalyses the synthesis of amylose in starch granules. Transformation of a diploid amylose-free (amf) potato mutant with the gene encoding GBSS leads to the restoration of amylose synthesis. Transformants were obtained which had wild-type levels of both GBSS activity and amylose content. It proved to be difficult to increase the amylose content above that of the wild-type potato by the introduction of additional copies of the wild-type GBSS gene. Staining of starch with iodine was suitable for investigating the degree of expression of the inserted GBSS gene in transgenic amf plants. Of the 19 investigated transformants, four had only red-staining starch in tubers indicating that no complementation of the amf mutation had occured. Fifteen complemented transformants had only blue-staining starch in tubers or tubers of different staining categories (blue, mixed and red), caused either by full or partial expression of the inserted gene. Complementation was also found in the microspores. The segregation of blue- and red-staining microspores was used to analyse the inheritance of the introduced GBSS genes. A comparison of the results from microspore staining and Southern hybridisation indicated that, in three tetraploid transgenics, the gene was probably inserted before (duplex), and in all others after, chromosome doubling (simplex). The partial complementation was not due to methylation of the HPAII/MSPI site in the promoter region. Partially complemented plants had low levels of mRNA as was found when the GBSS expression levels were inhibited by anti-sense technology.  相似文献   

5.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

6.
Granule-bound starch synthase I (GBSS I) is responsible for the synthesis of amylose in starch granules. A heterologous cassava GBSS I gene was tested for its ability to restore amylose synthesis in amylose-free (amf) potato mutants. For this purpose, the cassava GBSS I was equipped with different transit peptides. In addition, a hybrid containing the potato transit peptide, the N-terminal 89 amino acids of the mature potato GBSS I, and the C-terminal part of cassava GBSS I was prepared. The transgenic starches were first analysed by iodine staining. Only with the hybrid could full phenotypic complementation of the amf mutation be achieved in 13% of the plants. Most transformants showed partial complementation, but interestingly the size of the blue core was similar in all granules derived from one tuber of a given plant. The amylose content was only partially restored, up to 60% of wild-type values or potato GBSS I-complemented plants; however, the GBSS activity in these granules was similar to that found in wild-type ones. From this, and the observation that the hybrid protein (a partial potato GBSS I look-alike) performs best, it was concluded that potato and cassava GBSS I have different intrinsic properties and that the cassava enzyme is not fully adapted to the potato situation.  相似文献   

7.
Reductions in activity of SSIII, the major isoform of starch synthase responsible for amylopectin synthesis in the potato tuber, result in fissuring of the starch granules. To discover the causes of the fissuring, and thus to shed light on factors that influence starch granule morphology in general, SSIII antisense lines were compared with lines with reductions in the major granule-bound isoform of starch synthase (GBSS) and lines with reductions in activity of both SSIII and GBSS (SSIII/GBSS antisense lines). This revealed that fissuring resulted from the activity of GBSS in the SSIII antisense background. Control (untransformed) lines and GBSS and SSIII/GBSS antisense lines had unfissured granules. Starch analyses showed that granules from SSIII antisense tubers had a greater number of long glucan chains than did granules from the other lines, in the form of larger amylose molecules and a unique fraction of very long amylopectin chains. These are likely to result from increased flux through GBSS in SSIII antisense tubers, in response to the elevated content of ADP-glucose in these tubers. It is proposed that the long glucan chains disrupt organization of the semi-crystalline parts of the matrix, setting up stresses in the matrix that lead to fissuring.  相似文献   

8.
In order to examine whether alterations in the supply of precursor molecules into the starch biosynthetic pathway affected various characteristics of the starch, starch was isolated from potato (Solanum tuberosum L.) tubers containing reduced amounts of the enzyme ADP-glucose pyrophosphorylase (AGPase). It was found that although the type of crystalline polymorph in the starch was not altered, the amylose content was severely reduced. In addition, amylopectin from the transgenic plants accumulated more relatively short chains than that from control plants and the sizes of starch granules were reduced. The starch granules from the transgenic plants contained a greater amount of granule-bound starch synthase enzyme, which led to an increase in the maximum activity of the enzyme per unit starch tested. The K m for ADP-glucose was, at most, only slightly altered in the transgenic lines. Potato plants containing reduced AGPase activity were also transformed with a bacterial gene coding for AGPase to test whether this enzyme can incorporate phosphate monoesters into amylopectin. A slight increase in phosphate contents in the starch in comparison with the untransformed control was found, but not in comparison with starch from the line with reduced AGPase activity into which the bacterial gene was transformed. Received: 2 February 1999 / Accepted: 25 March 1999  相似文献   

9.
Transgenic potato (Solanum tuberosum L.) plants were created with sense and antisense copies of the potato D-enzyme (disproportionating enzyme; EC␣2.4.1.25) cDNA linked to patatin and cauliflower mosaic virus 35 S promoters, and screened for D-enzyme activity in tubers. Transformants with sense constructs mostly had wild type D-enzyme activity but two plants had only about 1% wild-type activity. Transformants with antisense constructs had activity ranging from 90% to about 1% of wild type. Three 35 S antisense plants with very low activity were analysed in detail. Western blot analysis showed that D-enzyme was present in greatly reduced amounts in tubers and in leaves, whereas plastidic starch phosphorylase (EC 2.4.1.1) was unaffected. The lack of D-enzyme resulted in slow plant growth but development was otherwise apparently normal. Furthermore, the starch content of tubers was not appreciably altered in amount, proportion of amylose, molecular weight of debranched amylopectin, or branch chain length, despite the lack of D-enzyme. These results do not indicate a direct requirement for D-enzyme in the synthesis and accumulation of storage starch in tubers. The results are discussed in terms of the known reactions catalysed by D-enzyme and possible involvement of D-enzyme in starch metabolism. Received: 12 November 1997 / Accepted: 23 December 1997  相似文献   

10.
Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear α(1,4)D-glucan polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic pathway.  相似文献   

11.
Potato plants (Solanum tuberosum L. cv. Désirée) transformed with sense and antisense constructs of a cDNA encoding the potato hexokinase 2 exhibited altered enzyme activities and expression of hexokinase 2 mRNA. Measurements of the maximum catalytic activity of hexokinase revealed an 11-fold variation in leaf (from 48% of the wild-type activity in antisense transformants to 446% activity in sense transformants) and an 8-fold variation in developing tubers (from 35% of the wild-type activity in antisense transformants to 212% activity in sense transformants). Despite the wide range of hexokinase activities, no substantial change was found in the fresh weight yield, starch, sugar and metabolite levels of transgenic tubers. However, both potato hexokinases 1 and 2 were able to complement the hyposensitivity of antisense hexokinase 1 Arabidopsis transgenic plants to glucose. In an in vitro bioassay of seed germination in a medium with high glucose levels, double transformants showed the same sensitivity to glucose as that of the wild-type ecotype, displaying a stunted phenotype in hypocotyls, cotyledons and roots.  相似文献   

12.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

13.

Background

Native starch accumulates as granules containing two glucose polymers: amylose and amylopectin. Phosphate (0.2–0.5%) and proteins (0.1–0.7%) are also present in some starches. Phosphate groups play a major role in starch metabolism while granule-bound starch synthase 1 (GBSS1) which represents up to 95% of the proteins bound to the granule is responsible for amylose biosynthesis.

Methods

Synchrotron micro-X-ray fluorescence (μXRF) was used for the first time for high-resolution mapping of GBSS1 and phosphate groups based on the XRF signal of sulfur (S) and phosphorus (P), respectively. Wild-type starches were studied as well as their related mutants lacking GBSS1 or starch-phosphorylating enzyme.

Results

Wild-type potato and maize starch exhibited high level of phosphorylation and high content of sulfur respectively when compared to mutant potato starch lacking glucan water dikinase (GWD) and mutant maize starch lacking GBSS1. Phosphate groups are mostly present at the periphery of wild-type potato starch granules, and spread all over the granule in the amylose-free mutant. P and S XRF were also measured within single small starch granules from Arabidopsis or Chlamydomonas not exceeding 3–5 μm in diameter.

Conclusions

Imaging GBSS1 (by S mapping) in potato starch sections showed that the antisense technique suppresses the expression of GBSS1 during biosynthesis. P mapping confirmed that amylose is mostly present in the center of the granule, which had been suggested before.

General significance

μXRF is a potentially powerful technique to analyze the minor constituents of starch and understand starch structure/properties or biosynthesis by the use of selected genetic backgrounds.  相似文献   

14.
15.
The metabolic function of the plastidic ATP/ADP transporter (AATP) in heterotrophic plastids was examined in transgenic potato plants that exhibited increased or decreased amounts of the protein. Altered mRNA levels correlated with activities of the plastidic ATP/ADP transporter. Potato tubers with decreased plastidic ATP/ADP transporter activities exhibited reduced starch contents whereas sense lines accumulated increased amounts of tuber starch. Starch from wild-type tubers had an amylose content of 18.8%, starch from antisense plants contained 11.5–18.0% amylose, whereas starch from sense plants had levels of 22.7–27.0%. The differences in physiological parameters were accompanied with altered tuber morphology. These changes are discussed with respect to the stromal ATP supply during starch biosynthesis.  相似文献   

16.
The effects of temperature on starch and amylose accumulation, fine structure of amylopectin and activities of some enzymes related to starch synthesis in developing rice endosperms was examined. Two early indica rice varieties were used, differing in amylose concentration (AC, %), namely Jia 935 (low AC) and Jia 353 (high AC). The results showed that the effects of high temperature on AC and amylopectin fine structure were variety-dependent. High temperature caused a reduction in amylose concentration and an increase in the short chain (CL<22) proportion of amylopectin for Jia 935; while opposite was true for Jia 353. High temperature also reduced and increased the activity of granule-bound starch synthase (GBSS) in Jia 935 and in Jia 353, respectively. This suggests that a change in the ratio of amylose/starch due to temperature was attributable to a change in GBSS activity. Moreover, obvious differences between the two rice varieties were detected in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADPG-Ppase), soluble starch synthase (SSS), starch branching enzyme (SBE), starch de-branching enzyme (SDBE) and starch phosphorylase (SPase) to high temperature. Accumulation rate of amylose was significantly and positively correlated with GBSS for Jia 935, but not for Jia 353. Amylose accumulation was also significantly and positively correlated with the activities of SDBE, SBE, ADPG-Ppase and SuSy for both varieties. The results suggest that the ratio of amylose to starch in rice endosperm is not only related to GBSS, but also affected by the activities of SDBE, SBE, ADPG-Ppase and SuSy.  相似文献   

17.
Modification of starch biosynthesis pathways holds an enormous potential for tailoring granules or polymers with new functionalities. In this study, we explored the possibility of engineering artificial granule-bound proteins, which can be incorporated in the granule during biosynthesis. The starch-binding domain (SBD)-encoding region of cyclodextrin glycosyltransferase from Bacillus circulans was fused to the sequence encoding the transit peptide (amyloplast entry) of potato granule-bound starch synthase I (GBSS I). The synthetic gene was expressed in the tubers of two potato cultivars (cv. Kardal and cv. Karnico) and one amylose-free (amf) potato mutant. SBDs accumulated inside starch granules, not at the granule surface. Amylose-free granules contained 8 times more SBD (estimated at ca. 1.6% of dry weight) than the amylose-containing ones. No consistent differences in physicochemical properties between transgenic SBD starches and their corresponding controls were found, suggesting that SBD can be used as an anchor for effector proteins without having side-effects. To test this, a construct harbouring the GBSS I transit peptide, the luciferase reporter gene, a PT-linker, and the SBD (in frame), and a similar construct without the linker and the SBD, were introduced in cv. Kardal. The fusion protein accumulated in starch granules (with retainment of luciferase activity), whereas the luciferase alone did not. Our results demonstrate that SBD technology can be developed into a true platform technology, in which SBDs can be fused to a large choice of effector proteins to generate potato starches with new or improved functionalities.  相似文献   

18.
The molecular deposition of starch extracted from normal plants and transgenically modified potato lines was investigated using a combination of light microscopy, environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM). ESEM permitted the detailed (10 nm) topographical analysis of starch granules in their hydrated state. CLSM could reveal internal molar deposition patterns of starch molecules. This was achieved by equimolar labelling of each starch molecule using the aminofluorophore 8-amino-1,3,6-pyrenetrisulfonic acid (APTS). Starch extracted from tubers with low amylose contents (suppressed granule bound starch synthase, GBSS) showed very little APTS fluorescence and starch granules with low molecular weight amylopectin and/or high amylose contents showed high fluorescence. Growth ring structures were sharper in granules with normal or high amylose contents. High amylose granules showed a relatively even distribution in fluorescence while normal and low amylose granules had an intense fluorescence in the hilum indicating a high concentration of amylose in the centre of the granule. Antisense of the starch phosphorylating enzyme (GWD) resulted in low molecular weight amylopectin and small fissures in the granules. Starch granules with suppressed starch branching enzyme (SBE) had severe cracks and rough surfaces. Relationships between starch molecular structure, nano-scale crystalline arrangements and topographical-morphological features were estimated and discussed.  相似文献   

19.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

20.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号