首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycopeptides from brain inhibit rates of polypeptide chain elongation   总被引:3,自引:0,他引:3  
In previous reports, we have identified cell-surface glycopeptides from mouse cerebrum (BCSG) that inhibited protein synthesis and mitosis in several cell types. When baby hamster kidney (BHK)-21 cells were infected with vesicular stomatitis virus (a negative strand RNA virus), BCSG extensively inhibited viral protein synthesis. This inhibition was effective against both protein and glycoprotein synthesis and was independent of amino acid uptake by infected cells, synthesis of viral RNA, and degradation of viral proteins. Analysis of polyribosome profiles in uninfected BHK-21 cells indicated that the degree of cellular protein synthesis inhibition could not be attributed to activation of RNase or solely to a disruption of chain initiation. When added directly to a cell-free protein-synthesizing system derived from BHK-21 cells, BCSG was ineffective, but if the inhibitory material was first allowed to react with cells, cell-free protein synthesis was substantially reduced. When BCSG were reacted with cells for 5 min at 0 degrees C, the cells tested, BHK-21 (a BCSG-sensitive line) and murine fibrosarcoma 2237 (a BCSG-insensitive line), both effectively adsorbed the inhibitor from the medium.  相似文献   

2.
Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.  相似文献   

3.
A ribosome undergoes significant conformational changes during elongation of a polypeptide chain, and these are correlated with structural changes of rRNAs. We tested 15 different oligonucleotides complementary to the selected, highly conserved seqences of rRNAs (L-rRNA, 5S rRNA and tRNA) important in protein biosynthesis. We carried out a reaction of binding Phe-tRNA to A site and a polymerization of polypeptide chains on the ribosomes converted either to pre- or to posttranslocational states. The inhibition of polymerization reaction by complementary oligonucleotides was high in all ribosomal states. The efficiency of inhibition of binding reaction was lower and more diverse than was the polypeptide elongation. We conclude that the selected oligonucleotides inhibit polypeptide synthesis with different effectivity, primarily depending on L-rRNA conformation within ribosome architecture.  相似文献   

4.
Effect of methanol on the partial reactions of polypeptide chain elongation   总被引:4,自引:0,他引:4  
E Hamel  T Nakamoto 《Biochemistry》1972,11(21):3933-3938
  相似文献   

5.
The conformation change of Thermus thermophilus tRNA(1Ile) upon complex formation with T. thermophilus elongation factor Tu (EF-Tu) was studied by analysis of the circular dichroism (CD) bands at 315 nm (due to the 2-thioribothymidine residue in the T-loop) and at 295 nm (due to the core structure of tRNA). Formation of the ternary complex of isoleucyl-tRNA(1Ile) and EF-Tu.GTP increased the intensities of these CD bands, indicating stabilization of the association between the T-loop and the D-loop and also a significant conformation change of the core region. Upon complex formation of EF-Tu.GTP and uncharged tRNA, however, the conformation of the core region is not changed, while the association of the two loops is still stabilized. On the other hand, the binding with EF-Tu.GDP does not appreciably affect the conformation of isoleucyl-tRNA or uncharged tRNA. These indicate the importance of the gamma-phosphate group of GTP and the aminoacyl group in the formation of the active complex of aminoacyl-tRNA and EF-Tu.GTP.  相似文献   

6.
7.
The effect of alcohols (methanol, ethanol, and propanol) on polypeptide chain elongation was studied. In the E. coli and rat liver cell-free systems, the optimal concentration of Mg2+ decreased with increase of ethanol concentration, although the maximum polyphenylalanine synthesis decreased. Methanol had almost the same effect as ethanol. Propanol decreased the optimal magnesium concentration, but polyphenylalanine synthetic activity was markedly decreased. The shift of optimal Mg2+ concentration by ethanol was also observed in polylysine and polysome-dependent polypeptide syntheses. Even in the presence of spermidine, ethanol caused the shift of optimal Mg2+ concentration. Ribosome-bound Mg2+ was decreased by the addition of ethanol. A study of the effect of alcohols on aminoacyl-tRNA formation with ten amino acids in the absence of added Mg2+ showed that the formation of arginyl-, leucyl-, and valyl-tRNA was stimulated by the alcohols. Valyl-tRNA formation in the presence of alcohols was completely inhibited by EDTA, while that in the presence of Mg2+ was inhibited slightly by EDTA. No PP1-ATP exchange was observed when alcohol was used as the only stimulant of valyl-tRNA formation.  相似文献   

8.
9.
10.
Effects of Cephalotaxus alkaloids (homoharringtonine and cephalotaxine) on the translation of endogenous mRNA in a cell-free system of rabbit reticulocyte lysate and on poly(U)-directed poly(Phe) synthesis on human placenta ribosomes was studied. The effect of the alkaloids on the activity of human placenta ribosomes in a template-dependent aminoacyl-tRNA binding, N-acetyl-phenylalanyl-puromycin and diphenylalanine formation was also studied. Homoharringtonine was shown to have little effect of codon-dependent Phe-tRNA(Phe) binding but the alkaloid strongly inhibited (Phe)2 formation as well as N-Ac-Phe-puromycin synthesis from the complex N-Ac-Phe-tRNA(Phe).poly(U).80S ribosomes. It was concluded that the site of homoharringtonine binding overlaps or coincides with the acceptor site of the ribosomal peptidyltransferase center. The association constant of homoharringtonine to the ribosomes was estimated to be (4.8 +/- 1.0) x 10(7) M-1. Cephalotaxine had no effect on the elongation steps.  相似文献   

11.
12.
Previous studies have proposed that specific translational pauses have evolved to promote protein folding inside the cell by temporally separating the folding of specific regions of some polypeptide chains during their synthesis. Here we show that this is the case for a bifunctional protein in Saccharomyces cerevisiae. The yeast TRP3 gene contains a translational pause comprising ten contiguous non-preferred codons within its second functional domain (indoleglycerol phosphate synthase). Site-directed mutagenesis was used to remove this translational pause by increasing the codon bias of the region without changing the amino acid sequence of the protein (to create the gene TRP3pr: pause replaced). The TRP3pr gene was able to complement a trp3:: URA3 null mutation in yeast. No significant differences in the doubling times of TRP3 or TRP3pr yeast transformants were observed during growth at 25 degrees C, 30 degrees C or 37 degrees C, or in the presence of sublethal concentrations of the analogue, 5-methyltryptophan. However, further analysis of TRP3 and TRP3pr transformants revealed that the removal of the translational pause causes a 1.5-fold decrease in indoleglycerol phosphate synthase activity per TRP3 mRNA. This observation which is statistically significant (P < 0.05) and reproducible, suggests that translational pausing promotes the correct intracellular folding of the TRP3 protein.  相似文献   

13.
The interaction and conformational relationships between rRNAs and ribosomal proteins are responsible for ribosome activity. We tested seven different deoxyoligonucleotides complementary to the selected, highly conserved sequences of 18S rRNAs important in protein biosynthesis. We carried out a reaction of binding Phe-tRNA to A site on the ribosomes converted either to pre- or to post-translocational states (with or without pre-hybridized oligonucleotides). We found a correlation between the level of oligomer hybridization and the inhibition of AA-tRNA binding. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis.  相似文献   

14.
2' and 3'-O-(N-acetyl-L-phenylalanyl)adenosine (Ac-Phe-Ado) were chemically synthesized. These two isomers were clearly separated from each other by high-performance liquid chromatography (HPLC). From the two isomers of [3H]Phe-tRNA in equilibrium, Ac-[3H]Phe-Ado was prepared, without any change in the 2'/3'-isomer ratio, by acetylation of the phenylalanyl residue with acetic anhydride followed by digestion with pancreatic RNase A. By HPLC analysis of this preparation of Ac-[3H]Phe-Ado, the abundance ratio of the 2'-isomer and the 3'-isomer of [3H]Phe-tRNA was found to be 0.20:0.80. Further, [3H]Phe-tRNA was bound to Escherichia coli polypeptide chain elongation factor Tu (EF-Tu) with the ligand of GTP or guanosine 5'-[beta, gamma-imido]triphosphate (GMP-P(NH)P). The ternary complex was treated with phenol and acetic anhydride, and then digested with pancreatic RNase A. By HPLC analysis of Ac-[3H]Phe-Ado, the abundance ratio of the 2'-isomer and the 3'-isomer of [3H]Phe-tRNA was determined to be 0.07:0.93 in the complex with EF-Tu.GTP and 0.04:0.96 in the complex with EF-Tu.GMP-P(NH)P. These results clearly indicate that the 3'-isomer, rather than the 2'-isomer, of aminoacyl-tRNA is exclusively involved in the ternary complex.  相似文献   

15.
16.
17.
At low NH4-+ concentrations, 50S ribosomal subunits from E. coli were fully active in the absence of 30S ribosomal subunits, in forming a complex with the polypeptide chain elongation factor G (EF-G) and guanine nucleotide (ternary complex formation), and also in supporting EF-G dependent hydrolysis of GTP (uncoupled GTPase reaction). However, both activities were markedly inhibited on increasing the concentration of the monovalent cation, and at 160 mM NH4-+, the optimal concentration for polypeptide synthesis in a cell-free system, almost no activity was observed with 50S ribosomes alone. It was found that the inhibitory effect of NH4-+ was reversed by addition of 30S subunits. Thus, at 160 mM NH4-+, only 70S ribosomes were active in supporting the above two EF-G dependent reactions, whereas at 20 mM NH4-+, 50S ribosomes were almost as active as 70S ribosomes. Kinetic studies on inhibition by NH4-+ of the formation of 50S ribosome-EF-G-guanine nucleotide complex, indicated that the inhibition was due to reduction in the number of active 50S ribosomes which were capable of interacting with EF-G and GTP at higher concentrations of NH4-+. The inhibitory effects of NH4-+ on ternary complex formation and the uncoupled GTPase reaction were markedly influenced by temperature, and were much greater at 0 degrees than at 30 degrees. A conformational change of 50S subunits through association with 30S subunits is suggested.  相似文献   

18.
19.
We have previously described the rational design of mutation-selective antisense oligonucleotides targeted to codon 12 of oncogenic Ha-ras mRNA. In order to further improve the biological efficacy of these unmodified oligonucleotides, we have studied three different classes of modifications: peptide nucleic acid backbone (PNA), sugar modification (2'-O-methyl) and phosphoramidate linkage (PN). We show that PNA is unique among the investigated steric blocking agents in its ability to specifically inhibit the translation of Ha-ras mRNA in vitro. The PNA-RNA hybrid (Tm=86 degrees C), which is not dissociated by cellular proteins and resists phenol extraction and urea denaturing conditions, specifically blocks the translation of mutated Ha-ras mRNA. A PNA tridecamer which forms with wild-type Ha-ras mRNA a duplex with a central mismatch had little effect on mRNA translation. Codon 12 is located close to the translation initiation site and hybridization of the PNA at this position may interfere with the assembly of the translation initiation complex. To test whether polypeptide chain elongation can also be blocked, we have targeted PNA tridecamers to codons in the 74, 128 and 149 regions. These PNAs form equally stable duplexes as that formed by the PNA targeted to the codon 12 region (ten G.C base-pairs out of 13). We show that PNA-RNA duplexes block the progression of the 80 S ribosome. Therefore, it is possible to arrest translation with concomitant production of a truncated protein by using duplex-forming PNA oligonucleotides targeted to a G+C-rich sequences. Our data demonstrate for the first time that a non-covalent duplex can arrest the translation machinery and polypeptide chain elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号