首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human immunodeficiency virus (HIV) infection causes chronic progressive immunodeficiency and immune dysregulaton. Although simple depletion of the major target of HIV infection, the CD4+ T cell, can explain much of the immunosuppression seen, there are multiple other factors contributing to the immune dysregulation. CD4+ T-cell depletion induces a range of homeostatic mechanisms that contribute to immune activation and cell turnover, providing a milieu conducive to further viral replication and cell destruction, resulting in functional defects in various lymphoid organs. These changes are progressive and in turn compromise the homeostatic processes. Further, the infection, like any other viral infection, provokes an active immune response consisting of both CD4+ and CD8+ T-cell responses. Both appear compromised, displaying aberrant memory cell production. While some of these defects result from viral variation and the chronicity of antigen presentation, other defects of memory cell production appear very early during the primary immune response limiting the viral specific T-cell responses from the outset. This, combined with the ability of the virus to escape any successful immune responses, results in an attenuated immune response that eventually becomes exhausted, characterized by progressive deficits in T-cell repertoire. Furthermore, negative regulatory mechanisms that normally control the immune response may be aberrantly invoked, perhaps directly by the virus, further compromising the efficacy of the immune response. Rational design of effective immunotherapies depends on a clear understanding of the processes compromising the immune response to HIV.  相似文献   

2.
3.
It has long been appreciated that CD4+ T lymphocytes are dysfunctional in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV)-infected individuals, and it has recently been shown that HIV/SIV infections are associated with a dramatic early destruction of memory CD4+ T lymphocytes. However, the relative contributions of CD4+ T-lymphocyte dysfunction and loss to immune dysregulation during primary HIV/SIV infection have not been fully elucidated. In the current study, we evaluated CD4+ T lymphocytes and their functional repertoire during primary SIVmac251 infection in rhesus monkeys. We show that the extent of loss of memory CD4+ T lymphocytes and staphylococcal enterotoxin B-stimulated cytokine production by total CD4+ T lymphocytes during primary SIVmac251 infection is tightly linked in a cohort of six rhesus monkeys to set point plasma viral RNA levels, with greater loss and dysfunction being associated with higher steady-state viral replication. Moreover, in exploring the mechanism underlying this phenomenon, we demonstrate that the loss of functional CD4+ T lymphocytes during primary SIVmac251 infection is associated with both a selective depletion of memory CD4+ T cells and a loss of the functional capacity of the memory CD4+ T lymphocytes that escape viral destruction.  相似文献   

4.
Human Immunodeficiency Virus (HIV) and intestinal parasitic infections are among the main health problems in developing countries like Ethiopia. Particularly, co-infections of these diseases would worsen the progression of HIV to Acquired Immunodeficiency Syndrome (AIDS). The purpose of this study was to determine the magnitude and risk factors for intestinal parasites in relation to HIV infection and immune status. The study was conducted in (1) HIV positive on antiretroviral therapy (ART) and (2) ART naïve HIV positive patients, and (3) HIV-negative individuals, at All African Leprosy and Tuberculosis (TB) Eradication and Rehabilitation Training Center (ALERT) hospital in Addis Ababa, Ethiopia. Study participants were interviewed using structured questionnaires to obtain socio-demographic characteristics and assess risk factors associated with intestinal parasitic infection. Intestinal parasites were identified from fecal samples by direct wet mount, formol ether concentration, and modified Ziehl–Neelsen staining techniques. The immune status was assessed by measuring whole blood CD4 T-cell count. The overall magnitude of intestinal parasite was 35.08%. This proportion was different among study groups with 39.2% (69/176), 38.83% (40/103) and 27.14% (38/140) in ART naïve HIV positives patients, in HIV negatives, and in HIV positive on ART patients respectively. HIV positive patients on ART had significantly lower magnitude of intestinal parasitic infection compared to HIV negative individuals. Intestinal helminths were significantly lower in HIV positive on ART and ART naïve patients than HIV negatives. Low monthly income, and being married, divorced or widowed were among the socio-demographic characteristics associated with intestinal parasitic infection. No association was observed between the magnitude of intestinal parasites and CD4 T-cell count. However, Cryptosporidium parvum, and Isospora belli were exclusively identified in individuals with CD4 T-cell count of ≤ 350 cells/mm3. Regular provision of mass preventive chemotherapy and extended health education will curb the burden of intestinal parasitic infection in the community. Emphasis should also be given to laboratory diagnosis and identification of opportunistic intestinal parasites in patients with lower CD4-Tcell count.  相似文献   

5.
CD4+CD25+调节性T细胞与人类获得性免疫缺陷病毒感染   总被引:1,自引:0,他引:1  
CD4 CD25 是调节性T细胞中功能最重要的一类.它是一类具有特殊免疫调节功能的T细胞亚群.它能够抑制自身免疫病的发生和发展,参与肿瘤免疫的调节,同时在感染和移植免疫中也发挥着极其重要的作用.T细胞的这一亚群具有免疫调节和免疫抑制的特性,新近发现它亦与爱滋病的发生、发展关系密切.HIV进入人体后,CD4 CD25 调节性T细胞抑制了机体的免疫效应但它也同时被感染,最终由于细胞毒的作用而死亡.由于调节性T细胞数量的减少不能有效的发挥其抑制作用,HIV持续的过度活化使得T细胞逐渐耗竭说明在HIV发生、发展的不同阶段Treg细胞可能都发挥了免疫抑制作用,但是却对HIV感染与爱滋病发病的进程产生了不同的效应.此外,CD4 CD25 调节性T细胞还与HIV病毒的持续存在密切相关.本文就CD4 CD25 调节性T细胞与人类获得性免疫缺陷病毒(HIV)感染之间关系进行初步的探讨.  相似文献   

6.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

7.
Parasites with complex life cycles often change intermediate host traits in order to enhance their transmission to the next host. Acanthocephalans are excellent examples of such parasitic manipulation. Here, we summarise evidence for adaptive parasitic manipulation in this group, provide a comprehensive overview of intermediate host traits affected by these parasites and discuss critical items for parasitic manipulation such as avoidance of infected prey by target hosts and transmission to dead‐end hosts.  相似文献   

8.
If parasites decrease the fitness of their hosts one could expect selection for host traits (e.g. resistance and tolerance) that decrease the negative effects of parasitic infection. To study selection caused by parasitism, we used a novel study system: we grew host plants (Urtica dioica) that originated from previously parasitized and unparasitized natural populations (four of each) with or without a holoparasitic plant (Cuscuta europaea). Infectivity of the parasite (i.e. qualitative resistance of the host) did not differ between the two host types. Parasites grown with hosts from parasitized populations had lower performance than parasites grown with hosts from unparasitized populations, indicating host resistance in terms of parasite’s performance (i.e. quantitative resistance). However, our results suggest that the tolerance of parasitic infection was lower in hosts from parasitized populations compared with hosts from unparasitized populations as indicated by the lower above‐ground vegetative biomass of the infected host plants from previously parasitized populations.  相似文献   

9.
The relationship between host and virus was examined during the initial stages of human immunodeficiency virus type 1 (HIV) infection in a volunteer from the Multicenter AIDS Cohort Study (MACS). The individual was asymptomatic and unaware of his infection during an initial donation of blood and inguinal lymphoid tissue. Proviral DNA, however, was present in cells from both sources, HIV RNA was detected in the plasma, and CD4+ cell levels were reduced by approximately 50% compared with previous donations in the MACS. In a second blood donation 12 days later, plasma HIV RNA increased 200-fold in tandem with viral isolates with an increased growth phenotype in vitro. HIV burden was ultimately suppressed upon seroconversion and the emergence of HIV-specific CD8+ cytotoxic T lymphocytes. These observations provide further evidence that the potential benefits of early treatment may be maximized during the early stages of infection, when viral fitness may be low but is unopposed by immune responses.  相似文献   

10.
Transmission of human immunodeficiency virus type 1 (HIV-1) is largely a result of heterosexual exposure, leading many investigators to evaluate mucosal vaccines for protection against intravaginal (i.vag.) transmission in macaque models of AIDS. Relatively little is known, however, about the dynamics of viral replication and the ensuing immune response following mucosal infection. We have utilized a simian-human immunodeficiency virus (SHIV) to study the differences in viremia, CD4 T-cell percentages, and mucosal and systemic anti-SHIV humoral and cellular immune responses during primary infection of animals infected either intravenously (i.v.) or i.vag. Positive viral cocultures, peripheral blood mononuclear cell viral load peaks, and CD4 cell declines were delayed by 1 week in the i.vag. inoculated animals compared to the animals infected i.v., demonstrating delayed viral spreading to the periphery. In contrast, mucosal anti-SHIV antibody levels were greater in magnitude and arose more rapidly and mucosal CD8(+) T-cell responses were enhanced in the i.vag. group animals, whereas both the magnitudes and times of onset of systemic immune responses for the animals in the two groups did not differ. These observations demonstrate that compartmentalization of viral replication and induction of local antiviral immunity occur in the genital tract early after i.vag. but not i.v. inoculation. Induction of mucosal immunity to target this local, contained replication should be a goal in HIV vaccine development.  相似文献   

11.
Studies have shown that interferon (IFN)-α has an inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication in the acute infection stage, but its role in chronic infection is still unclear. We previously established a nonpathogenic HIV-1 and pathogenic simian immunodeficiency virus (SIV) model in northern pig-tailed macaques (NPMs, Macaca leonina). In the current study, we detected viral RNA and DNA in various tissues (axillary lymph nodes (LNs), inguinal LNs, and spleen) in HIV-1NL4-3- and SIVmac239-infected NPM during the chronic stage of infection. Results indicated that the levels of viral DNA and RNA were higher in the tested tissues (LNs and spleen) of the SIVmac239-infected NPMs than in the HIV-1NL4-3 infected NPMs. Furthermore, IFN-α expression was higher in the HIV-infected tissues than in the SIV-infected controls. The HIV restriction factors induced by IFN-α (i.e., tetherin and MX2), as well as inflammatory factors IFN-γ, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), were analyzed using real-time polymerase chain reaction (PCR) and immunofluorescence staining assays. Results showed that their expression levels were much higher in the HIV-infected tissues than in the SIV-infected controls. These findings were confirmed by in vitro experiments on healthy NPM peripheral blood mononuclear cells infected with HIV-1NL4-3, which showed lower viral replication, higher IFN-α expression, and an antiviral status. This study demonstrated that HIV-1 infection, but not SIVmac239 infection, in NPMs caused higher expression of IFN-α and induced a higher antiviral status. This may be one of the reasons why HIV-1 cannot replicate at a high level or develop into AIDS in NPMs.  相似文献   

12.
Mathematical modeling is becoming established in the immunologist's toolbox as a method to gain insight into the dynamics of the immune response and its components. No more so than in the case of the study of human immunodeficiency virus (HIV) infection, where earlier work on the viral dynamics brought significant advances in our understanding of HIV replication and evolution. Here, I review different areas of the study of the dynamics of CD4+ T cells in the setting of HIV, where modeling played important and diverse roles in helping us understand CD4+ T-cell homeostasis and the effect of HIV infection. As the experimental techniques become more accurate and quantitative, modeling should play a more important part in both experimental design and data analysis.  相似文献   

13.
Viral sequence evolution in acute hepatitis C virus infection   总被引:2,自引:0,他引:2       下载免费PDF全文
CD8(+)-T-cell responses play an important role in the containment and clearance of hepatitis C virus (HCV) infection, and an association between viral persistence and development of viral escape mutations has been postulated. While escape from CD8+ -T-cell responses has been identified as a major driving force for the evolution of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV), a broader characterization of this relationship is needed in HCV infection. To determine the extent, kinetics, and driving forces of HCV sequence evolution, we sequenced the entire HCV genome longitudinally in four subjects monitored for up to 30 months after acute infection. For two subjects the transmission sources were also available. Of 53 total non-envelope amino acid substitutions detected, a majority represented forward mutations away from the consensus sequence. In contrast to studies in HIV and SIV, however, only 11% of these were associated with detectable CD8+ T-cell responses. Interestingly, 19% of non-envelope mutations represented changes toward the consensus sequence, suggesting reversion in the absence of immune pressure upon transmission. Notably, the rate of evolution of forward and reverse mutations correlated with the conservation of each residue, which is indicative of structural constraints influencing the kinetics of viral evolution. Finally, the rate of sequence evolution was observed to decline over the course of infection, possibly reflective of diminishing selection pressure by dysfunctional CD8+ T cells. Taken together, these data provide insight into the extent to which HCV is capable of evading early CD8+ T-cell responses and support the hypothesis that dysfunction of CD8+ T cells may be associated with failure to resolve HCV infections.  相似文献   

14.
The progressive loss of CD4 T lymphocyte is patognomonic of Human Immunodeficiency Virus (HIV) infection and results in immunodeficiency and the appearance of acquired immunodeficiency syndrome (AIDS)-defining pathologies. Although a percentage of CD4 T lymphocytes is destroyed directly by HIV infection, a much higher proportion of lymphocytes remains uninfected and therefore must be destroyed by mechanisms not directly involving viral infection. One such mechanism is apoptotic T cell death (ATCD). ATCD in HIV infection has been shown to be: 1) secondary to cross-linking of CD4 by viral proteins; 2) mediated by both APO-1/Fas and lymphotoxin (LT); and 3) differentially modulated by type 1 and type 2 cytokines. We will briefly analyze the experimental evidences suggesting that ATCD contributes significantly to the immunopathogenesis of HIV/AIDS via depletion of CD4+ T cells.  相似文献   

15.
HIV感染中的细胞凋亡   总被引:3,自引:0,他引:3  
CD4^ T细胞的丢失在HIV感染引起免疫缺陷过程中起着重要作用。但造成CD4^ T细胞丢失的具体机制还不清楚,细胞凋亡可能是CD4^ T细胞丢失的一个重要因素,HIV感染以后,病毒蛋白的持续性产出导致免疫系统的持续性激活,引起Th1细胞的丢失,Th1细胞通过合成Ⅰ型细胞因子,抑制淋巴细胞的自发凋亡,另外,病毒蛋白或其他因素能够使CD4^ ,CD8^ T细胞和APC转化为凋亡的效应细胞,通过Fas/FasL或其他途径引起细胞凋亡,HIV感染人体后凋亡细胞不仅有CD4^ T细胞,还包括B细胞,NK细胞,粒细胞,神经细胞和单细胞,凋亡作为机体的自我防护措施,在清除感染细胞的同时,并没有抑制HIV在单细胞/巨噬细胞内的复制,反而造成大量未感染细胞的凋亡,导致对HIV复制的失控,发展为严重的免疫缺陷,引起AIDS相关的机会性感染。  相似文献   

16.
Human cytomegalovirus (CMV) is a beta-herpesvirus that causes a chronic subclinical infection in healthy man. The immune system is unable to eliminate the virus completely, allowing virus to persist in a latent state. In the immunocompromised host, this equilibrium is disturbed, resulting in a clinical infection. In immunocompromised rats, clinical CMV infection is associated with an increase in NK cells and CD8+ T cells, including a phenotypically aberrant CD8+ T cell population. Using flow cytometry, we examined the effect of acute CMV infection on the composition of leukocyte subsets in immunocompromised patients. Therefore, we used peripheral blood of CMV seronegative patients receiving a kidney from a seronegative (control group) or a seropositive donor. Of the patients receiving a seropositive kidney, only the patients undergoing acute CMV infection were included (experimental group). Special attention was paid to the phenotype of the cytotoxic T cells. The development of acute CMV infection resulted in an increased NK cell number and an activation of both CD4+ and CD8+ T cells, as determined by HLA-DR expression. An aberrant CD8+ T cell subset with decreased expression of CD8 and TCR alphabeta appeared in the infected patients. Furthermore, the size of this subpopulation of CD8+ T cells is positively correlated with the viral load.  相似文献   

17.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

18.
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.  相似文献   

19.
Most human immunodeficiency virus (HIV) type 1 infections occur by the mucosal route. Thus, it is important to assess the immune responses to HIV in the vaginal, cervical, and rectal compartments. Here we quantitated the virus-specific CD8+ T-cell response and characterized the phenotype of lymphocytes in the genital tracts of naive macaques, macaques acutely or chronically infected with simian immunodeficiency virus SIVmac251, and macaques chronically infected with chimeric simian/human immunodeficiency virus SHIV(KU2.) Vaginal biopsy samples or samples obtained at the time of euthanasia were used in this analysis. The percentage of Gag-specific, tetramer-positive T cells was as high as 13 to 14% of the CD3+ CD8+ T-cell population in the vaginal and cervical laminae propriae of both SIVmac251 and SHIV(KU2) chronically infected macaques. In most cases, the frequency of this response in the cervicovaginal compartment far exceeded the frequency in the blood or the draining iliac lymph node. Vaginal laminae propriae of naive macaques contained 55 to 65% CD3+ CD8+ cells and 28 to 34% CD3+ CD4+ cells, while the majority of intraepithelial cells were CD8+ T cells (75 to 85%). For the same cells, the surface expression of CD62L was low whereas that of alphaEbeta7 was high. No difference in the expression of CD45RA on CD8+ T cells was observed in the chronic stage of SIVmac251 infection. Although no decrease in the percentage of CD4+ cells in the genital tract was observed within the first 12 days of infection, by 6 weeks from SIVmac251 infection and thereafter the percentage of CD4+ T cells was decreased in the laminae propriae of the vagina and cervix. Expression of CD45RA did not differ in naive and acutely SIVmac251 infected macaques. Information on the quality and quantity of local immune responses may help in the design of vaccine strategies aimed at containing viral replication at the site of viral encounter.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS). The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI) dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM) enrolled pre-HAART (Highly Active Antiretroviral Therapy). We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon) biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum) and somatostatin (duodenum and colon) immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号