共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Expert review of proteomics》2013,10(3):337-348
Morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering molecular targets amenable to specific intervention, thereby customizing therapy for individual patients. This review considers the clinical application of morphoproteomics in malignant cells in the context of currently available pharmaceutical agents and discusses opportunities for combinatorial approaches that involve one or more small molecule inhibitors and single-agent chemotherapy with relatively low toxicity profiles. Future directions that involve focusing on points of convergence in signal transduction pathways and which integrate morphoproteomic with genomic and pharmacoproteomic and protein-function microarray data are offered. 相似文献
3.
Brown RE 《Expert review of proteomics》2005,2(3):337-348
Morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering molecular targets amenable to specific intervention, thereby customizing therapy for individual patients. This review considers the clinical application of morphoproteomics in malignant cells in the context of currently available pharmaceutical agents and discusses opportunities for combinatorial approaches that involve one or more small molecule inhibitors and single-agent chemotherapy with relatively low toxicity profiles. Future directions that involve focusing on points of convergence in signal transduction pathways and which integrate morphoproteomic with genomic and pharmacoproteomic and protein-function microarray data are offered. 相似文献
4.
In recent years, genome-sequencing projects of pathogens and humans have revolutionized microbial drug target identification. Of the several known genomic strategies, subtractive genomics has been successfully utilized for identifying microbial drug targets. The present work demonstrates a novel genomics approach in which codon adaptation index (CAI), a measure used to predict the translational efficiency of a gene based on synonymous codon usage, is coupled with subtractive genomics approach for mining potential drug targets. The strategy adopted is demonstrated using respiratory pathogens, namely, Streptococcus pneumoniae and Haemophilus influenzae as examples. Our approach identified 8 potent target genes (Streptococcus pneumoniae?C2, H. influenzae?C6), which are functionally significant and also play key role in host-pathogen interactions. This approach facilitates swift identification of potential drug targets, thereby enabling the search for new inhibitors. These results underscore the utility of CAI for enhanced in silico drug target identification. 相似文献
5.
Mouse models of human disease are an important tool for studying disease mechanism and manifestation in a way that is physiologically relevant. Spinal muscular atrophy (SMA) is a neurodegenerative disease that is caused by deletion or mutation of the survival motor neuron gene (SMN1). The SMA disease is present in a spectrum of disease severities ranging from infant mortality, in the most severe cases, to minor motor impairment, in the mildest cases. The variability of disease severity inversely correlates with the copy number, and thus expression of a second, partially functional survival motor neuron gene, SMN2. Correspondingly, a plethora of mouse models has been developed to mimic these different types of SMA. These models express a range of SMN protein levels and extensively cover the severe and mild types of SMA, with neurological and physiological manifestation of disease supporting the relevance of these models. The SMA models provide a strong background for studying SMA and have already shown to be useful in pre-clinical therapeutic studies. The purpose of this review is to succinctly summarize the genetic and disease characteristic of the SMA mouse models and to highlight their use for therapeutic testing. 相似文献
6.
RNA interference: potential therapeutic targets 总被引:2,自引:0,他引:2
One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. The use of RNAi for genetic-based therapies has been widely studied, especially in viral infections, cancers, and inherited genetic disorders. As such, RNAi technology is a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics. 相似文献
7.
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer. 相似文献
8.
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with progressive airflow obstruction. Tobacco smoking is the main risk factor worldwide. In contrast to asthma, antiinflammatory therapies are rather ineffective in improving chronic symptoms and reducing inflammation, lung function decline, and airway remodeling. Specific drugs that are directed against the remodeling and chronic inflammation, thereby preventing lung tissue damage and progressive lung function decline, must be developed. Experimental models and expression studies suggest that anti-vascular endothelial growth factor (VEGF) receptor strategies may be of use in patients with emphysema, whereas anti-HER1-directed strategies may be more useful in patients with pulmonary mucus hypersecretion, as seen in chronic bronchitis and asthma. Growth factors and cytokines including VEGF, fibroblast growth factors, transforming growth factor-beta, tumor necrosis factor-alpha, CXCL1, CXCL8, and CCL2, and signal transduction proteins such as mitogen-activated protein kinase p38 and nuclear factor-kappaB, seem to be important pathogenetic molecules in COPD. Specific antagonists for these proteins may be effective for different inflammatory diseases. However, their efficacy for COPD therapy has not yet been demonstrated. Finally, other drugs such as retinoic acids may provide restoration of lung tissue structure. Such approaches, however, must await the first results of growth factor or cytokine antagonist therapy in chronic lung diseases. 相似文献
9.
Moens AL Vrints CJ Claeys MJ Timmermans JP Champion HC Kass DA 《American journal of physiology. Heart and circulatory physiology》2008,294(5):H1971-H1977
Folic acid (FA) is a member of the B-vitamin family with cardiovascular roles in homocysteine regulation and endothelial nitric oxide synthase (eNOS) activity. Its interaction with eNOS is thought to be due to the enhancement of tetrahydrobiopterin bioavailability, helping maintain eNOS in its coupled state to favor the generation of nitric oxide rather than oxygen free radicals. FA also plays a role in the prevention of several cardiac and noncardiac malformations, has potent direct antioxidant and antithrombotic effects, and can interfere with the production of the endothelial-derived hyperpolarizing factor. These multiple mechanisms of action have led to studies regarding the therapeutic potential of FA in cardiovascular disease. To date, studies have demonstrated that FA ameliorates endothelial dysfunction and nitrate tolerance and can improve pathological features of atherosclerosis. These effects appear to be homocysteine independent but rather related to their role in eNOS function. Given the growing evidence that nitric oxide synthase uncoupling plays a major role in many cardiovascular disorders, the potential of exogenous FA as an inexpensive and safe oral therapy is intriguing and is stimulating ongoing investigations. 相似文献
10.
11.
Marco Racchi Daniela Uberti Stefano Govoni Maurizio Memo Cristina Lanni Sonya Vasto Giuseppina Candore Calogero Caruso Loriana Romeo Giovanni Scapagnini 《Immunity & ageing : I & A》2008,5(1):7
On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the
lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response
and Brain Ageing are summarized. Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease, which
in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives
must be accomplished to make prevention feasible: i) individuals at high risk of AD need to be identified before the earliest
symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease
is likely to be less successful and ii) safe and effective interventions need to be developed that lead to a decrease in expression
of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53
in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On
the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium,
suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation,
such as AD. 相似文献
12.
Significant advances have been made over the past few years concerning the cellular and molecular events underlying ischemic cell death. The brain succumbs to ischemic injury as a result of loss of metabolic stores, excessive intracellular calcium accumulation, oxidative stress, and potentiation of the inflammatory response. Neurons can also die via necrotic or apoptotic mechanisms, depending on the nature and severity of the insult. While it has been widely held that ischemia is notable for cessation of protein synthesis, brain regions with marginal reduction in blood supply are especially capable of expressing a variety of genes, the functions of many of which are only beginning to be understood. Gene expression is also upregulated upon reperfusion and reoxygenation. As a result, a number of signaling pathways have been identified and are now known to contribute to ischemic progression or, in some cases, attempts at self preservation. This review will focus on the roles of stress genes, apoptosis-related genes, and inflammation. Knowledge of such molecular events has fueled interest in developing specific molecular targets with the hope of someday affecting outcome in clinical stroke. 相似文献
13.
The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets. 相似文献
14.
Parkinson's disease: mechanisms and models 总被引:54,自引:0,他引:54
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process. 相似文献
15.
16.
Roles of PPARs in NAFLD: potential therapeutic targets 总被引:1,自引:0,他引:1
Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increasing prevalence due to the obesity epidemic. Hence, NAFLD represents a rising threat to public health. Currently, no effective treatments are available to treat NAFLD and its complications such as cirrhosis and liver cancer. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors which regulate lipid and glucose metabolism as well as inflammation. Here we review recent findings on the pathophysiological role of PPARs in the different stages of NAFLD, from steatosis development to steatohepatitis and fibrosis, as well as the preclinical and clinical evidence for potential therapeutical use of PPAR agonists in the treatment of NAFLD. PPARs play a role in modulating hepatic triglyceride accumulation, a hallmark of the development of NAFLD. Moreover, PPARs may also influence the evolution of reversible steatosis toward irreversible, more advanced lesions. Presently, large controlled trials of long duration are needed to assess the long-term clinical benefits of PPAR agonists in humans. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease. 相似文献
17.
18.
Receptor for advanced glycation end-products (RAGE) is known to be involved in microvascular complications in diabetes. RAGE is also profoundly associated with macrovascular complications in diabetes through regulation of atherogenesis, angiogenic response, vascular injury, and inflammatory response. The potential significance of RAGE in the pathogenesis of cardiovascular disease appears not to be confined solely to nondiabetic rather than diabetic conditions. Numerous truncated forms of RAGE have recently been described, and the C-terminally truncated soluble form of RAGE has received much attention. Soluble RAGE consists of several forms, including endogenous secretory RAGE (esRAGE), which is a spliced variant of RAGE, and a shedded form derived from cell-surface RAGE. These heterogeneous forms of soluble RAGE, which carry all of the extracellular domains but are devoid of the transmembrane and intracytoplasmic domains, bind ligands including AGEs and can antagonize RAGE signaling in vitro and in vivo. ELISA systems have been developed to measure plasma esRAGE and total soluble RAGE, and the pathophysiological roles of soluble RAGE have begun to be unveiled clinically. In this review, we summarize recent findings regarding pathophysiological roles in cardiovascular disease of RAGE and soluble RAGE and discuss their potential usefulness as therapeutic targets and biomarkers for the disease. 相似文献
19.
Anti-integrin as novel drug-discovery targets: potential therapeutic and diagnostic implications 总被引:5,自引:0,他引:5
Mousa SA 《Current opinion in chemical biology》2002,6(4):534-541
The role of integrin and extracellular matrix proteins in various pathological processes (including angiogenesis, thrombosis, apoptosis and cell migration and proliferation), leading to both acute and chronic disease states (e.g. ocular diseases, metastasis, unstable angina, myocardial infarction, stroke, osteoporosis, a wide range of inflammatory diseases, vascular remodeling and neurodegenerative disorders) has been recently documented. A key success in this field is evident from the potential role of the platelet GPIIb/IIIa (alphaIIbbeta3) integrin in the prevention, treatment and perhaps diagnosis of various thromboembolic disorders. Additionally, progress has been shown in the development of leukocyte alpha4beta1 antagonists for various inflammatory indications and alphav integrin antagonists for angiogenesis and vascular-related disorders. However, the exact modes of action of certain integrin antagonists are still not fully clear. Integrin antagonists in clinical or pre-clinical development are expected to be used as a stand-alone therapy or, better, as an adjunct to other pharmacotherapy, radiotherapy or interventional procedures. 相似文献
20.