首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xiao Y  Tan ML  Ichiye T  Wang H  Guo Y  Smith MC  Meyer J  Sturhahn W  Alp EE  Zhao J  Yoda Y  Cramer SP 《Biochemistry》2008,47(25):6612-6627
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated for analysis of data on the reduced FdVI. Finally, the degree of collectivity was used to quantitate the delocalization of the dynamic properties of the redox-active Fe site. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

2.
1. The primary structure of a 4Fe-4S ferredoxin from Bacillus stearothermophilus was determined and shown to consist of a single polypeptide chain of 81 amino acid residues. The molecular weight of the holoprotein is about 9120. 2. There are only four cysteine residues in the molecule; three of these are located near the N-terminus as a Cys-X-X-Cys-X-X-Cys segment, and the fourth cysteine residue is followed by a proline and located in the C-terminal half. 3. The Fe-S chromophore in B. stearothermophilus ferredoxin was previously well characterized and was shown to consist of a single 4Fe-4S cluster. This ferredoxin sequence establishes for the first time the relative location of the four cysteine residues necessary to bind the 4Fe-4S cluster of a 4Fe ferredoxin, and is in agreement with the criteria for the relative positions of the cysteines proposed from X-ray-crystallographic studies on an 8Fe (two 4Fe-4S clusters) ferredoxin. 4. The sequence of B. stearothermophilus ferredoxin is homologous in many segments to that of other bacterial ferredoxins, the degree of homology being greater towards ferredoxins from Desulfovibrio gigas and photosynthetic bacteria than to Clostridial ferredoxins. 5. The presence of a relatively higher number of glutamic acid and lower number of cysteine residues in the molecule may explain the greater thermal stability and oxygen-insenstivity of this ferredoxin.  相似文献   

3.
The Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae contains a single Fe-S cluster localized in subunit NqrF. Here we study the electronic properties of the Fe-S center in a truncated version of the NqrF subunit comprising only its ferredoxin-like Fe-S domain. M?ssbauer spectroscopy of the Fe-S domain in the oxidized state is consistent with a binuclear Fe-S cluster with tetrahedral sulfur coordination by the cysteine residues Cys(70), Cys(76), Cys(79), and Cys(111). Important sequence motifs surrounding these cysteines are conserved in the Fe-S domain and in vertebrate-type ferredoxins. The magnetic circular dichroism spectra of the photochemically reduced Fe-S domain exhibit a striking similarity to the magnetic circular dichroism spectra of vertebrate-type ferredoxins required for the in vivo assembly of iron-sulfur clusters. This study reveals a novel function for vertebrate-type [2Fe-2S] clusters as redox cofactors in respiratory dehydrogenases.  相似文献   

4.
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal-mode assignments, we conducted NRVS with D14C ferredoxin samples with (36)S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains, (Ph(4)P)(2)[Fe(4)S(4)Cl(4)]. Several distinct regions of NRVS intensity are identified, ranging from "protein" and torsional modes below 100 cm(-1), through bending and breathing modes near 150 cm(-1), to strong bands from Fe-S stretching modes between 250 and ~400 cm(-1). The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The (57)Fe partial vibrational densities of states for the oxidized samples were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low-frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe(4)S(4)](2+/+) redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

5.
The structural and electronic properties of the [2Fe-2S] clusters in reduced putidaredoxin, Spinacea oleracea ferredoxin, and Clostridium pasteurianum [2Fe-2S] ferredoxin have been investigated by resonance Raman and variable temperature magnetic circular dichroism spectroscopies. Both techniques are shown to provide diagnostic fingerprints for identifying [2Fe-2S]+ clusters in more complex multicomponent metalloenzymes. The Fe-S stretching modes of oxidized and reduced putidaredoxin are assigned via 34S and D2O isotope shifts and previous normal mode calculations for adrenodoxin (Han, S., Czernuszewicz, R. S., Kimura, T., Adams, M. W. W., and Spiro, T. G. (1989) J. Am. Chem. Soc. 111, 3505-3511). The close similarity in the resonance Raman spectra of reduced [2Fe-2S] centers, in terms of both the vibrational frequencies and enhancement profiles of the Fe-S stretching modes, permits these assignments to be generalized to all clusters of this type. Modes primarily involving Fe(III)-S(Cys) stretching are identified in all three reduced [2Fe-2S] proteins, and the frequencies are rationalized in terms of the conformation of the cysteine residues ligating the Fe(III) site of the localized valence reduced cluster. D2O isotope shifts indicate few, if any, amide NH-S hydrogen bond interactions involving the cysteines ligating the Fe(III) site. Preliminary resonance Raman excitation profiles suggest assignments for the complex pattern of electronic bands that comprise the low temperature magnetic circular dichroism spectra of the reduced proteins. S----Fe(III) and Fe(II)----S charge transfer, Fe d-d, and Fe(II)----Fe(III) intervalence bands are identified.  相似文献   

6.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

7.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

8.
The resonance Raman spectrum of oxidized wild-type P. furiosus SOR at pH 7.5 and 10.5 has been investigated using excitation wavelengths between 406 and 676 nm, and vibrational modes have been assigned on the basis of isotope shifts resulting from global replacements of (32)S with (34)S, (14)N with (15)N, (56)Fe with (54)Fe, and exchange into a H(2)(18)O buffer. The results are interpreted in terms of the crystallographically defined active-site structure involving a six-coordinate mononuclear Fe center with four equatorial histidine ligands and axial cysteine and monodentate glutamate ligands (Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. C. (2000) Biochemistry 39, 2499-2508). Excitation into the intense (Cys)S(p(pi))-to-Fe(d(pi)) CT transition centered at 660 nm results in strong enhancement of modes at 298 cm(-1) and 323 cm(-1) that are assigned to extensively mixed cysteine S-C(beta)-C(alpha) bending and Fe-S(Cys) stretching modes, respectively. All other higher-energy vibrational modes are readily assigned to overtone or combination bands or to fundamentals corresponding to internal modes of the ligated cysteine. Weak enhancement of Fe-N(His) stretching modes is observed in the 200-250 cm(-1) region. The enhancement of internal cysteine modes and Fe-N(His) stretching modes are a consequence of a near-planar Fe-S-C(beta)-C(alpha)-N unit for the coordinated cysteine and significant (His)N(p(pi))-Fe(d(xy))-(Cys)S(p(pi)) orbital overlap, respectively, and have close parallels to type 1 copper proteins. By analogy with type 1 copper proteins, putative superexchange electron-transfer pathways to the mononuclear Fe active site are identified involving either the tyrosine and cysteine residues or the solvent-exposed deltaN histidine residue in a Y-C-X-X-H arrangement. Studies of wild-type at pH 10.5 and the E14A variant indicate that the resonance Raman spectrum is remarkably insensitive to changes in the ligand trans to cysteine and hence are inconclusive concerning the origin of the alkaline transition and the nature of sixth Fe ligand in the E14A variant.  相似文献   

9.
BACKGROUND: Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein surface, operate at potentials above +300 mV at pH 7, and express pH- and ionic strength-dependent redox behavior. The reduction potentials of the dioxygenase ferredoxins are approximately 150 mV and are pH-independent. These distinctions were predicted to arise from differences in the exposure of the cluster and/or interactions of the histidine ligands. RESULTS: The crystal structure of BphF, the Rieske-type ferredoxin associated with biphenyl dioxygenase, was determined by multiwavelength anomalous diffraction and refined at 1.6 A resolution. The structure of BphF was compared with other Rieske proteins at several levels. BphF has the same two-domain fold as other Rieske proteins, but it lacks all insertions that give the others unique structural features. The BphF Fe-S cluster and its histidine ligands are exposed. However, the cluster has a significantly different environment in that five fewer polar groups interact strongly with the cluster sulfide or the cysteinyl ligands. CONCLUSIONS: BphF has structural features consistent with a minimal and perhaps archetypical Rieske protein. Variations in redox potentials among Rieske clusters appear to be largely the result of local electrostatic interactions with protein partial charges. Moreover, it appears that the redox-linked ionizations of the Rieske proteins from proton-translocating complexes are also promoted by these electrostatic interactions.  相似文献   

10.
Kinetic results are presented for the reaction of reduced [2Fe-2S] ferredoxin from the blue-green alga Spirulina platensis with Co(NH3)6(3+), Co(edta)- and Co(acac)3 as oxidants at pH 8.0 at I0.10 (NaCl). The aim is to compare results obtained with those previously reported for the [2Fe-2S] ferredoxin from parsley, where the two ferredoxins under consideration are in evolutionary terms widely divergent (35% amino acid variations). The three oxidants chosen have different ligand sets and different charges, and are the complexes that in previous studies have given greatest diversity in behaviour. With Co(NH3)6(3+) first-order rate constants (oxidant in large excess) tend to a limiting value with increasing concentration of oxidant. With Co(edta)- and Co(acac)3 there is no similar tendency to limiting behaviour and a first-order dependence on oxidant is observed. The temperature-dependence of the Co(NH3)6(3+) reaction was investigated, and values were obtained for delta H0 [19.8kJ X mol-1 (4.7kcal X mol-1)] and delta S0 [129.3J X K-1 X mol-1 (30.9 cal X K-1 X mol-1)] for the association step that occurs before electron transfer. Whereas redox-inactive Cr(NH3)6(3+) displays competitive inhibition in the reaction of Co(NH3)6(3+), it accelerates the reaction of Co(edta)-, and only partially blocks the reaction with Co(acac)3. Results obtained are similar to those previously reported for parsley (and spinach) ferredoxin. It is concluded that electrostatics play a dominant role and that a negatively charged functional site on the protein common to all three ferredoxins is influential. Conserved negative patches at positions 67-69 and 94-96 within 1.0 nm (10A) of an Fe atom of the active site, as well as the exposed S atoms of cysteine residues 41 and 46, which are a part of the Fe2S*2(SR)4(3-) cluster, are the most likely possibilities. The various effects of Cr(NH3)6(3+) provide a means of testing for utilization of the same site in reactions of the ferredoxins with physiological partners.  相似文献   

11.
The amino acid sequence of a ferredoxin from a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius, was determined by a combination of various conventional methods to be as follows: Gly-Ile-Asp-Pro-Tyr-Arg-Thr-His-Lys-Pro-Val-Val-Gly-Asp-Ser-Ser-Gly-His- Lys-Ile -Tyr-Gly-Pro-Val-Glu-Ser-Pro-Lys(Me)-Val-Leu-Gly-Val-His-Gly-Thr-Ile-Val -Gly-Va l-Asp-Phe-Asp-Leu-Cys-Ile-Ala-Asp-Gly-Ser-Cys-Ile-Thr-Ala-Cys-Pro-Val-As n-Val-P he-Gln-Trp-Tyr-Glu-Thr-Pro-Gly-His-Pro-Ala-Ser-Glu-Lys-Lys-Ala-Asp-Pro-V al-Asn- Glu-Gln-Ala-Cys-Ile-Phe-Cys-Met-Ala-Cys-Val-Asn-Val-Cys-Pro-Val-Ala-Ala- Ile-Asp -Val-Lys-Pro-Pro. It was composed of 103 amino acid residues giving a molecular weight of 10,908 excluding Fe and S atoms. This ferredoxin contained an N6-monomethyllysine residue at position 29 which was determined by a comparison of the elution profile of the acid hydrolysates of the protein and peptides on an amino acid analyzer with three methyl derivatives of lysine and also by field desorption mass spectrometry of a purified peptide. The ferredoxin has only 7 cysteine residues, which probably participate in constructing the Fe-S clusters of this ferredoxin, indicating the presence of a unique chelate structure. Comparison of this ferredoxin with other archaebacterial ferredoxins indicated that the archaebacteria might have multiple origins in an evolutionary tree.  相似文献   

12.
The [2Fe-2S] ferredoxin ("Red paramagnetic protein", RPP) from C. pasteurianum has been found to be composed of two identical subunits of 10,000 +/- 2 000 daltons, each containing a [2Fe-2S] cluster. Resonance Raman (RR) spectra of RPP have been obtained at 23 degrees K, and compared to those of spinach ferredoxin (Sp Fd). Ten modes of the [2Fe-2S] chromophore were observed in the 100-450 cm-1 range. Assignments of non fundamental modes in the 500-900 cm-1 range allowed correlations between fundamental stretching modes of RPP and Sp Fd. Although assuming a [2Fe-2S] structure, the chromophore of RPP differs from that of Sp Fd by its conformation and by a slight weakening of Fe-S bonds, involving both the inorganic core and the cysteine ligands.  相似文献   

13.
The amino acid sequence of the major ferredoxin component isolated from a dinoflagellate, Peridinium bipes, was completely determined. Staphylococcus aureus V8 proteolytic, tryptic and chymotryptic peptides of Cm-ferredoxin were prepared and sequenced. The sequence was Phe-Lys-Val-Thr-Leu-Asp-Thr-Pro-Asp-Gly-Lys-Lys-Ser-Phe-Glu-Cys- Pro-Gly-Asp-Ser-Tyr-Ile-Leu-Asp-Lys-Ala-Glu-Glu-Glu-Gly-Leu-Glu-Leu-Pro- Tyr-Ser - Cys-Arg-Ala-Gly-Ser-Cys-Ser-Ser-Cys-Ala-Gly-Lys-Val-Leu-Thr-Gly-Ser-Ile- Asp-Gln - Ser-Asp-Gln-Ala-Phe-Leu-Asp-Asp-Asp-Gln-Gly-Gly-Asp-Gly-Tyr-Cys-Leu-Thr- Cys-Val - Thr-Tyr-Pro-Thr-Ser-Asp-Val-Thr-Ile-Lys-Thr-His-Cys-Glu-Ser-Glu-Leu. It was composed of 93 amino acid residues with 7 cysteine residues, the highest number found among the chloroplast-type ferredoxins so far sequenced. A cysteine residue was found for the first time at the 89th position in a chloroplast-type ferredoxin. Calculation of the numbers of amino acid differences among chloroplast-type ferredoxins indicates that the Peridinium ferredoxin is far divergent not only from higher plant ferredoxins but also from blue-green algal ferredoxins.  相似文献   

14.
The hyperfine-shifted 1H NMR resonances of oxidized and reduced Trichomonas vaginalis ferredoxin, a functionally unique [2Fe-2S] ferredoxin, have been studied. The oxidized protein spectrum displayed a pattern of six broad upfield-shifted resonances between 13 and 40 ppm with chemical shifts distinct from those of other [2Fe-2S] ferredoxins. All hyperfine 1H resonances of the oxidized ferredoxin displayed anti-Curie temperature dependences. Reduced T. vaginalis ferredoxin displayed hyperfine resonances both upfield and downfield of the diamagnetic region. These resonances showed Curie temperature dependences. Overall the hyperfine-shifted NMR spectrum of T. vaginalis ferredoxin, along with other spectroscopic properties, suggested different structural properties for the active center of oxidized hydrogenosomal ferredoxins from those of other [2Fe-2S] ferredoxins.  相似文献   

15.
The structure of a low-potential ferredoxin isolated from Bacillus thermoproteolyticus has been refined by a restrained least-squares method. The final crystallographic R factor is 0.204 for 2906 reflections with F greater than 3 sigma F in the 6.0 to 2.3 A resolution range. The model contains 81 amino acid residues, one [4Fe-4S] cluster, and 59 water molecules. The root-mean-square deviation from ideal values for bond lengths is 0.018 A, and the mean coordinate error is estimated to be 0.25 A. The present ferredoxin is similar in the topology of the polypeptide backbone to the dicluster-type ferredoxins from Peptococcus aerogenes and Azotobacter vinelandii, but has considerable insertions and deletions of the peptide segments as well as different secondary structures. Although all but the C-terminal C zeta atoms of P. aerogenes ferredoxin superpose on the C alpha atoms of A. vinelandii ferredoxin, only 60% superpose on the C alpha atoms of B. thermoproteolyticus ferredoxin, with a root-mean-square distance of 0.82 A for each pair. The conformations of the peptide segments surrounding the [4Fe-4S] clusters in these three ferredoxins are all conserved. Moreover, the schemes for the NH...S hydrogen bonds in these ferredoxins are nearly identical. The site of the aromatic ring of Tyr27 in B. thermoproteolyticus ferredoxin is close spatially to that of Tyr28 in P. aerogenes ferredoxin with reference to the cluster, but these residues do not correspond in the spatial alignment of their polypeptide backbones. We infer that in monocluster-type ferredoxins, the side-chain at the 27th residue has a crucial effect on the stability of the cluster. Of the four cysteine residues that bind to the second Fe-S cluster in the dicluster-type ferredoxins, two are conserved in the monocluster-type ferredoxins from Desulfovibrio gigas. D. desulfuricans Norway, and Clostridium thermoaceticum. The tertiary structure of B. thermoproteolyticus ferredoxin suggests that in such monocluster-type ferredoxins these two cysteine residues, which in it correspond to Ala21 and Asp53, form a disulfide bridge.  相似文献   

16.
[2Fe2S] ferredoxins isolated from various plants and algae comprise 93–99 amino acid residues and resemble each other not only in sequences, but also in physiological functions. One of them isolated from Spirulina platensis was subjected to X-ray analysis and its three dimensional structure is now known. [2Fe2S] ferredoxins of a different type are found in halobacteria and comprise 128 amino acid residues. Both types of the [2Fe2S] ferredoxins exhibit low redox potentials. By comparing the amino acid sequences of 28 [2Fe2S] ferredoxins and the tertiary structure of S. platensis ferredoxin we predicted a common three-dimensional structure to the [2Fe2S] ferredoxins and proposed a molecular surface area to be interacting with FNR. An artificial small molecule composed of 20 amino acid residues is designed on the basis of the tertiary structure of S. platensis ferredoxin. The amino acid sequence was predicted to be ProTyrSerCysArgAlaGlyAlaCysSerThrCysAlaGly ProLeuLeuThr CysVal which should have a [2Fe2S] cluster with a low redox potential  相似文献   

17.
18.
The primary structure of a ferredoxin isolated from D. desulfuricans Norway strain, which we called ferredoxin II (Fd II) has been elucidated. This ferredoxin is a dimer constituted of two identical subunits of molecular weight 6000. In ferredoxin II two (4 Fe-4 S) centers are present per subunit instead of one (Fe-S) center as is the case for the other ferredoxins isolated from Desulfovibrio and for Fd I from the same organism. The comparison of amino-acid sequences shows that ferredoxin II presents more homologies with clostridial type ferredoxin than with the ferredoxins from D. gigas and D. africanus.  相似文献   

19.
A vertebrate ferredoxin (human ferredoxin) and a plant-type ferredoxin (the ferredoxin from the vegetative form of Anabaena 7120) were labeled selectively with deuterium at their active site cysteines. The recombinant proteins were produced in Escherichia coli and labeled by replacing natural abundance cysteine in the defined culture medium with (2)H(alpha)-cysteine, (2)H(beta2), (2)H(beta3)-cysteine, or (2)H(beta2)-cystine. The chiral labeled cystine ((2)H(beta2)-cystine) was prepared by selective hydrogen exchange catalyzed by cystathionine gamma-synthase. NMR spectra of these samples in their oxidized and reduced states support unambiguous identifications by atom type of (1)H and (2)H NMR signals from the cysteine alpha and beta hydrogens. These signals lie outside the normal diamagnetic spectral region as a result of interaction of the hydrogens with unpaired electron density from the iron-sulfur cluster, and their chemical shifts are highly dependent on local conformation at the active site. The very different chemical properties of the iron centers of plant-type and vertebrate ferredoxins reflect relatively small differences in the conformation of the iron-sulfur cluster ligands.  相似文献   

20.
In 80% dimethyl sulfoxide/H2O, Azotobacter ferredoxin FeS clusters can be extruded with benzene thiol. The extruded clusters have an absorption spectra maximum at 458 nm which is characteristic of 4Fe4S centers. The amino terminal sequence of the Azotobacter ferredoxin has 7 of the 8 Cys residues at residue numbers 8, 11, 16, 20, 24, 39 and 42. Except for Cys 24, all of these residues can be correlated to homologous Cys residues in other bacterial ferredoxins. Although two thirds of the first 45 residues are identical to or conservative replacements for the first 43 residues of other bacterial ferredoxins, the insertion of Cys-24 indicates a major change in the environment of one of the two 4Fe4S clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号