首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study demonstrates the importance of mitochondrial activities in controlling Mucor rouxii morphogenesis. The respiratory capacity of the spores of this facultatively anaerobic, dimorphic fungus becomes repressed if germination and growth take place in the absence of oxygen. The level of activity of mitochondrial enzymes such as cytochrome oxidase and malate dehydrogenase is lower in the anaerobic yeastlike cells than it is in ungerminated spores and in aerobic hyphae, but the reverse is true for glycolytic enzymes such as pyruvate kinase and alcohol dehydrogenase. Following exposure to air, yeastlike cells convert into hyphae after a lag period corresponding to aerobic adaptation. Anaerobic cultures grown in the presence of ethylenediaminetetraacetate (EDTA) at a concentration of 10(-4) M exhibit hyphal morphology. These cells, which are fully adapted to anaerobic fermentation, nevertheless have potentially active mitochondria with the same levels of respiratory enzymes as ungerminated spores. These cells are able to grow immediately after aeration, without an adaptation lag. Evidence is presented which indicates that the morphogenetic effect of EDTA is not the result of elimination of free metals. Additional evidence proving mitochondrial control of morphogenesis in M. rouxii is that chloramphenicol (4 mg/ml) induced the formation of respiratory-deficient, yeastlike cells in aerobic cultures.  相似文献   

2.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

3.
The ability of rice seedlings to grow from dry seed under anoxia provides a rare opportunity in a multicellular eukaryote to study the stages of mitochondrial biogenesis triggered by oxygen availability. The function and proteome of rice mitochondria synthesized under 6 days of anoxia following 1 day of air adaptation have been compared with mitochondria isolated from 7-day aerobically grown rice seedlings. Rice coleoptiles grown under anoxia, and the mitochondria isolated from them respired very slowly compared with air-adapted and air-grown seedlings. Immunodetection of key mitochondrial protein markers, isoelectric focusing electrophoresis followed by SDS-PAGE to make soluble mitochondria proteome maps, and shotgun sequencing of mitochondrial proteins by liquid chromatography-tandem mass spectrometry all revealed similar patterns of the major function categories of mitochondrial proteins from both anoxic and air-adapted samples. Activity analysis showed respiratory oxidases markedly increased in activity during the air adaptation of seedlings. Blue-native electrophoresis followed by SDS-PAGE of mitochondrial membrane proteins clearly showed the very low abundance of assembled b/c complex and cytochrome c(1) oxidase complex in the mitochondrial membrane in anoxic samples and the dramatic increase in the abundance of these complexes on air adaptation. Total heme content, cytochrome absorbance spectra, and the electron carrier, cytochrome c, also increased markedly on air adaptation. These results likely reflect limited heme synthesis for cytochrome assembly in the absence of oxygen and represent a discrete and reversible blockage of full mitochondrial biogenesis in this anoxia-tolerant species.  相似文献   

4.
Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min–1.g weight–1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.  相似文献   

5.
6.
Rhodoquinone (RQ) participates in fumarate reduction under anaerobiosis in some bacteria and some primitive eukaryotes. Euglena gracilis, a facultative anaerobic protist, also possesses significant rhodoquinone-9 (RQ9) content. Growth under low oxygen concentration induced a decrease in cytochromes and ubiquinone-9 (UQ9) content, while RQ9 and fumarate reductase (FR) activity increased. However, in cells cultured under aerobic conditions, a relatively high RQ9 content was also attained together with significant FR activity. In addition, RQ9 purified from E. gracilis mitochondria was able to trigger the activities of cytochrome bc1 complex, bc1-like alternative component and alternative oxidase, although with lower efficiency (higher Km, lower Vm) than UQ9. Moreover, purified E. gracilis mitochondrial NAD+-independent D-lactate dehydrogenase (D-iLDH) showed preference for RQ9 as electron acceptor, whereas L-iLDH and succinate dehydrogenase preferred UQ9. These results indicated a physiological role for RQ9 under aerobiosis and microaerophilia in E. gracilis mitochondria, in which RQ9 mediates electron transfer between D-iLDH and other respiratory chain components, including FR.  相似文献   

7.
Respiration and mitochondria in Mucor genevensis, a facultatively anaerobic dimorphic mold, have been studied in aerobically and anaerobically grown cells and in anaerobically grown cells adapting to aerobic conditions. Respiration in hyphae continues at a high level during aerobic growth but drops rapidly on exhaustion of glucose. In anaerobically grown yeastlike cells, containing no recognizable aerobic cytochromes, a small cyanide-insensitive respiration occurs. Mitochondria with well defined cristae are visible in negative contrast after KMnO(4) fixation of stringently anaerobic cells containing low amounts of fatty acid of which 10% or less are unsaturated. On aeration of anaerobically grown cells, respiratory capacity and cytochromes develop rapidly, even in the presence of 10% glucose, indicating that glucose does not repress development of respiration. However, mycelium formation by adapting yeastlike cells is repressed by high glucose concentration. In adapting cells, apparent changes in mitochondrial ultrastructure appear to be more related to changes in fixation properties of cells than to changes in the structure of mitochondria.  相似文献   

8.
Escherichia coli has two terminal oxidases for its respiratory chain: cytochrome o (low O2 affinity) and cytochrome d (high O2 affinity). Expression of the cyo operon, encoding cytochrome o, is decreased by anaerobic growth, whereas expression of the cyd operon, encoding cytochrome d, is increased by anaerobic growth. We show by the use of lac gene fusion that the expressions of cyo and cyd are under the control of the two-component arc system. In a cyo+ cyd+ background, expression of phi(cyo-lac) is higher when the organism is grown aerobically than when it is grown anaerobically. A mutation in either the sensor gene arcB or the pleiotropic regulator gene arcA almost abolishes the anaerobic repression. In the same background, expression of phi(cyd-lac) is higher under anaerobic growth conditions than under aerobic growth conditions. A mutation in arcA or arcB lowers both the aerobic and anaerobic expressions, suggesting that ArcA plays an activating role instead of the typical repressing role. Under aerobic growth conditions, double deletions of cyo and cyd lower phi(cyo-lac) expression but enhance phi(cyd-lac) expression. The double deletions also prevent elevated aerobic induction of the lct operon (encoding L-lactate dehydrogenase), another target operon of the arc system. In contrast, these deletions do not circumvent aerobic repression of the nar operon (encoding the anaerobic respiratory enzyme nitrate reductase) under the control of the pleiotropic fnr gene product. It thus appears that ArcB senses the presence of O2 by level of an electron transport component in reduced form or that of an nonautoxidizable compound linked to the process by a redox reaction, whereas Fnr senses O2 by a different mechanism.  相似文献   

9.
Changes in the mitochondria of aerobically grown Saccharomyces cerevisiae cells upon deaeration and subsequent aeration of the medium were studied.

1. It is shown that removal of oxygen at the end of the exponential phase of growth (after completion of mitochondria formation) causes a decrease in activity of the respiratory enzymes. The activity of the complete respiratory system decreases much more rapidly than the activities of its fragments (NADH: ferricyanide reductase, succinate:ferricyanide reductase, NADH:cytochrome c reductase, succinate:cytochrome c reductase and cytochrome oxidase). The activities are restored to their initial level upon aeration of the cell suspension. The addition of Tween-80 and ergosterol to the medium prior to deaeration does not prevent inactivation of the respiratory system.

All the changes in mitochondria described occurred under conditions where cell division was insignificant.

2. Deaeration of the medium decreases the content of cytochromes b and aa3 in the mitochondrial fraction, cytochrome aa3 “disappearing” more quickly. The concentration of cytochromes in this fraction increases upon subsequent aeration of the cells. The total cytochromal content of the cells remains practically unchanged under the same conditions.

3. According to electron microscopic data, anaerobiosis causes a certain disorganization of mitochondrial cristal membranes. The mitochondrial structures are recovered upon aeration of the yeast cell suspension. It may be reasoned that inactivation and reactivation of the respiratory system are associated with reversible changes in mitochondrial membrane structure.

4. The effect of protein synthesis inhibitors on the restoration of mitochondria was investigated. It is shown that chloramphenicol does not suppress this process. In the presence of cycloheximide, oxygen induces reactivation of the respiratory system and simultaneously the appearance of particles resembling mitochondria. However, these particles gradually undergo morphological changes and the respiratory activity of the mitochondrial fraction decreases. Cycloheximide added to yeast cells that had not been deaerated, did not affect their mitochondria.

5. The results described suggest that the functions of oxygen in the formation of mitochondria are not restricted to the induction of mitochondrial protein synthesis and to the participation in the synthesis of certain non protein membrane components. Evidently, oxygen has a direct effect on the assembly of the respiratory system and mitochondrial membranes as a whole.  相似文献   


10.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

11.
Storey BT 《Plant physiology》1974,53(6):846-850
During the transition from the aerobic steady state with succinate as substrate to anaerobiosis, in suspensions of skunk cabbage (Symplocarpus foetidus) mitochondria treated with antimycin A, cytochrome b(562) becomes reoxidized to the extent of about 20%, synchronously with the reduction of cytochrome c(549). This reoxidation occurs in both the absence and presence of m-chlorobenzhydroxamic acid, a specific inhibitor for the alternate terminal oxidase of plant mitochondria. A flavoprotein component, amounting to 13% to 15% of the total nonfluorescent mitochondrial flavoprotein, undergoes reduction synchronously with the oxidation of cytochrome b(562) during the aerobic to anaerobic transition with succinate as substrate in the presence of both antimycin A and m-chlorobenzhydroxamic acid. This flavoprotein component remains reduced in the presence of cyanide. The half-time for reduction of the flavoprotein component and cytochrome c(549) and for oxidation of cytochrome b(562) during the aerobic to anaerobic transition with succinate as substrate in the presence of both antimycin A and m-chlorobenzhydroxamic acid is 2 seconds. The half-times for oxidation of cytochrome c(549) and the flavoprotein component are 2.1 and 170 milliseconds, respectively, during the anaerobic to aerobic transition induced by addition of 14 mum O(2) to the mitochondrial suspensions. The half-time for reduction of cytochrome b(562) under these conditions is 150 milliseconds, synchronous with the flavoprotein component. The synchrony of the flavoprotein oxidation and of the cytochrome b(562) reduction at a rate much slower than that of cytochrome c(549) oxidation implies that, in antimycin-treated plant mitochondria, the state of the cytochrome b(562)/antimycin complex is regulated by the redox state of this flavoprotein component, rather than by cytochrome c(549). It is tentatively suggested that these two components are not part of the main sequence of the respiratory chain, but may be part of a multienzyme complex active in the hydroxylation reactions required for ubiquinone biosynthesis in the inner mitochondrial membrane.  相似文献   

12.
The effects of culture environment on the volume density and surface density of mitochondria and endoplasmic reticulum in a facultative yeast were studied. When compared with cells grown aerobically on a nonrepressive substrate, cells grown in the absence of oxygen showed a sharp reduction in both volume density of mitochondria and surface density of the inner mitochondrial membrane (imm) in the remaining mitochondrial profiles. Use of fermentable (repressive) substrates under aerobic conditions restricted the volume density of mitochondria to a much greater extent than the surface density of imm. The range of mitochondrial volume densities in these experiments was 4-11%. Surface density of endoplasmic reticulum (ER) was sensitive to growth rate and in particular to changes in oxygen tension, showing large fluctuations during both anaerobic and aerobic adaptation. These fluctuations in ER are discussed in relation to the known role of this organelle in lipid metabolism.  相似文献   

13.
The effects of thyroid hormone on the accumulation of inner membrane polypeptides in rat liver mitochondria have been investigated using Western blot analysis. Respiration and mitochondrial protein synthesis were also measured. Levels of the subunits of cytochrome oxidase, the cytochrome bc1 complex, and the beta-subunit of F1-ATPase increase relatively late, requiring 3-6 days of treatment and high doses of hormone. In contrast, respiration increases under conditions in which no significant accumulation of individual subunits is observed. Our results indicate that increased oxidative capacity of mitochondria can be divided into an early response which probably involves metabolic regulation of mitochondrial respiration by hormone and a later response which is due to elevated mitochondrial protein synthesis and the accumulation of polypeptides of the respiratory chain.  相似文献   

14.
To obtain more information about the composition of the respiratory chain under different growth conditions and about the regulation of electron-transfer to several oxidases and reductases, ubiquinol oxidase complexes were partially purified from membranes of Paracoccus denitrificans cells grown in carbon-source-limited aerobic, nitrate-limited anaerobic and oxygen-limited chemostat cultures. The isolated enzymes consisted of cytochromes bc1, c552 and aa3. In comparison with the aerobic ubiquinol oxidase complex, the oxygen- and nitrate-limited ones contained, respectively, less and far less of the cytochrome aa3 subunits and the anaerobic complex also contained lower amounts of cytochrome c552. In addition, extra haem-containing polypeptides were present with apparent Mr of 14,000, 30,000 and 45,000, the former one only in the anaerobic and the latter two in both the anaerobic and oxygen-limited preparations. This is the first report describing four different membrane-bound c-type cytochromes. The potentiometric and spectral characteristics of the redox components in membrane particles and isolated ubiquinol oxidase fractions were determined by combined potentiometric analysis and spectrum deconvolution. Membranes of nitrate- and oxygen-limited cells contained extra high-potential cytochrome b in comparison with the membranes of aerobically grown cells. No difference was detected between the three isolated ubiquinol oxidase complexes. Aberrances with already published values of redox potentials are discussed.  相似文献   

15.
16.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

17.
The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.  相似文献   

18.
19.
20.
Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号