首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

2.
Summary Drosophila females homozygous for the mutation dicephalic occasionally produce ovarian follicles with a nurse-cell cluster on each oocyte pole (dic follicles). Most dic follicles contain 15 nurse cells as in the normal follicle, but the total nurse-cell volume is larger in dic follicles; this is in keeping with the increase in DNA content recently described. However, the relative increase in oocyte volume during nurse-cell regression (from stage 10B onward) is not significantly larger in dic than in normal follicles. Time-lapse recordings in vitro show that, as a rule, both nurse cell clusters in a dic follicle export cytoplasm to the oocyte but nurse-cell regression remains incomplete at both poles and the persisting remnants of the nurse cells cause anomalies in chorion shape. The kinematics of cytoplasmic transfer are less aberrant at that oocyte pole which harbours the germinal vesicle. Possible links are discussed between these anomalies of oogenesis and the double-anterior embryonic patterns observed in the majority of developing dic eggs.  相似文献   

3.
4.
Summary Homozygous females of the mutantsegalitarian andBicaudal-D R26produce follicles in which the oocyte is replaced by an additional nurse cell. Normal morphological markers for polarity can be identified in mutant follicles but the normal spatial organization of these markers is disturbed. For example, nurse-cell nuclei of different ploidy classes are present but, contrary to wild-type follicles, the nuclei show no anteroposterior ploidy gradient. The two cells with four intercellular bridges, one of which should have developed into the oocyte rather than a nurse cell, are located at the posterior pole only in young follicles (up to about stage 5), whereas during later stages they are more often found at lateral or intermediate positions. This disturbed polarity correlates with a variable aberrant pattern of extracellular ionic currents. Moreover, in the mutant follicles patches of columnar follicular epithelium differentiate locally although this type of epithelium forms normally only around the oocyte. The follicle cells at both follicle poles possess anterior quality since they migrate from both poles towards the centre of the follicle, as do the border cells restricted to the anterior pole in wild-type follicles. Our analysis indicates that in the mutants the follicular polarity is normal at first but becomes disturbed during stages 5 to 6. The secondary breakdown of polarity is likely to follow on from the absence of the oocyte.  相似文献   

5.
The toucan (toc) gene is required in the germline for somatic cell patterning during Drosophila oogenesis. To better understand the function of toc, we performed a detailed analysis of the distribution of the Toucan protein during oogenesis. Toc expression is restricted to the germline cells and shows a dynamic distribution pattern throughout follicle development. Mislocalization of the Toc protein in mutant follicles in which the microtubule network is altered indicates that microtubules play a role in Toc localization during oogenesis.  相似文献   

6.
Summary In aberrant egg follicles of the pattern mutant dicephalic (dic) the oocyte is wedged in between two groups of nurse cells, and this condition may give rise to embryos which express anterior traits at both ends. We have analysed the role of the dic genotype of the germ line cells and the surrounding somatic follicle cells in the formation of the dic follicular phenotype. By means of pole cell transplantations into Fs (1) K 1237 hosts (this cell-autonomous mutation causes degeneration of the host's germ line cells early in oogenesis), we constructed chimeras in which either the follicle cells, the germ line cells, or both were homozygous for the dic mutation. In all three combinations the dic phenotype was expressed but not in controls with dic + in both germ line cells and follicular epithelium. Since follicles with the dic phenotype may be produced if either the germ line cells or the follicle cells lack dic + gene activity we suggest that cellular interactions between both cell types are required for the correct positioning of the oocyte at the follicle's posterior pole.  相似文献   

7.
Summary The developmental potential of the cells of the somatic follicular epithelium (follicle cells) was studied in mutants in which the differentiation of the germ-line cells is blocked at different stages of oogenesis. In two mutants, sn 36a and kelch, nurse cell regression does not occur, yet the follicle cells around the small oocyte continue their normal developmental program and produce an egg shell with micropylar cone and often deformed operculum and respiratory appendages. Neither the influx of nurse cell cytoplasm into the oocyte nor the few follicle cells covering the nurse cells are apparently required for the formation of the egg shell. In the tumor mutant benign gonial cell neoplasm (bgcn) the follicle cells can also differentiate to some extent although the germ-line cells remain morphologically undifferentiated. Vitelline membrane material was synthesized by the follicle cells in some bgcn chambers and in rare cases a columnar epithelium, which resembled morphologically that of wild-type stage-9 follicles, formed around the follicle's posterior end. The normal polarity of the follicular epithelium that is characteristic for mid-vitellogenic stages may, therefore, be established in the absence of morphologically differentiating germ-line cells. However, the tumorous germ-line cells do not constitute a homogeneous cell population since in about 30% of the analyzed follicles a cell cluster at or near the posterior pole can be identified by virtue of its high number of concanavalin A binding sites. This molecular marker reveals an anteroposterior polarity of the tumorous chambers. In follicles mutant for both bgcn and the polarity gene dicephalic the cluster of concanavalin A-stained germ-line cells shifts to more anterior positions in the follicle.  相似文献   

8.
Summary The somatic epithelia of Dysdercus and Apis follicles were analyzed by electron microscopy, and the patterns of F-actin and microtubules were studied by fluorescence microscopy. The epithelia in both species differ considerably in shape and in the organization of the cytoskeleton. During previtellogenic stages, the epithelium consists of columnar-shaped cells with small (Dysdercus) or no (Apis) lateral intercellular spaces. During vitellogenesis, the follicle cells round up; the intercellular spaces increase in size in Dysdercus follicles, whereas in Apis follicles they remain small. Along the basal surface of the follicle cells, there are conspicuous parallel bundles of microfilaments perpendicular to the anteroposterior axis of the follicles. In the honeybee, these microfilament bundles are present in long filopodia, most of which are embedded in thickenings of the basement membrane and extend over the surfaces of neighbouring cells. In the cotton bug, the basal surface of the follicle cells is thrown into parallel folds. The microfilament bundles are located just underneath the cell membrane where the folds contact the basement membrane. In the polar regions of the Dysdercus follicle, the epithelial cells become flat and adhere to each other without forming intercellular spaces. The basement membrane is particularly thick in the polar areas; this has also been observed in Apis follicles around the intercellular bridge connecting oocyte and nurse cells.  相似文献   

9.
Abstract The formation and cytodifferentiation of egg envelopes were studied at the ultrastructural level in blastozooids of Botryllus schlosseri. The process was divided into five recognized stages of oogenesis. First, the small young oocytes (stage 1) are contacted by scattered cells (primary follicle cells—PFC) which adhere to the oolemma at several junctional spots. PFC extend all around the growing oocyte, acquire polarity, and form a layer covered externally by a thin basal membrane (stage 2). At stage 3 isolated cells are recognizable between the PFC layer and oocyte. They never form junctions with the oocyte and represent prospective inner follicle cells (IFC) and test cells (TC), the latter being progressively received in superficial depressions in the oocyte. The layer of PFC, which maintains junctions with the oolemma, represents prospective outer follicle cells (OFC). PFC are considered to be the source of the three cellular envelopes because a contribution from mesenchymatous elements was not observed. At the beginning of vitellogenesis (stage 4), the vitelline coat (VC) becomes recognizable as a loose net covering the oocyte and TC. It is crossed by the oocyte microvilli and OFC projections which meet and form numerous small junctional plaques, some of them resembling gap junctions. IFC, VC and TC show marked signs of differentiation with approaching ovulation. OFC differentiate completely before ovulation (stage 5) and are engaged in intense synthesis of proteins which may be transferred and taken by endocytosis into the oocyte for yolk formation. Experiments with injected horseradish peroxidase also revealed that proteins present in the blood may reach the oocyte via the intercellular pathway, overcoming OFC and IFC. The possible roles of all the egg envelopes are discussed.  相似文献   

10.
Developing ovarian follicles of Bacillus rossius have been examined ultrastructurally in an attempt to understand how inception of vitel-logenesis is controlled. Early vitellogenic follicles are characterized by a thick cuboidal epithelium that is highly interlocked with the oocyte plasma membrane. Gap junctional contacts are present both at the follicle cell/oocyte interface and in between adjacent follicle cells. In addition, microvilli of follicle cells protrude deeply into the cortical ooplasm of these early vitellogenic oocytes. With the onset of vitellogenesis, wide intercellular spaces appear in the follicle cell epithelium and at the follicle cell/oocyte interface. Gap junctions become progressively reduced both on the follicle cell surface and on the oocyte plasma membrane. Microvilli from the two cell types no longer interlock. From a theoretical standpoint each of the two structural differentiations present at the follicle cell/oocyte interface—gap junctions and follicle cell microvilli—could potentially trigger inception of vitellogenesis. Gap junctions might permit the passage of a regulatory molecule, transferring from follicle cells to oocyte, which would control the assembly of coated pits on the oocyte plasma membrane. Alternatively cell interaction via microvilli might induce the appearance of coated pits, thus creating a membrane focus for vitellogenin receptors. Both possibilities are discussed in relation to current literature.  相似文献   

11.
We analyzed the organization of the microtubular cytoskeleton and the distribution of centrosomes at the different stages of differentiation of the ovarian follicle of the lizard Podarcis sicula by examining immunolabeled α‐ and γ‐tubulins using confocal microscopy. We observed that in the follicular epithelium the differentiation of the nurse pyriform cells is accompanied by a reorganization of the microtubules in the oocyte cortex, changing from a reticular to a radial pattern. Furthermore, these cortical microtubules extend in the cytoplasm of the connected follicle cells through intercellular bridges. Radially oriented microtubules were still more marked in the oocyte cortex during the final stages of oogenesis, when the yolk proteins were incorporated by endocytosis. The nucleation centres of the microtubules (centrosomes) were clearly detectable as γ‐tubulin immunolabeled spots in the somatic stromal cells of the germinal bed. A diffuse cytoplasmic immunolabeling together with multiple labeled foci, resembling the desegregation of the centrosomes in early oogenesis of vertebrates and invertebrates, was revealed in the prediplotenic germ cells. In the cytoplasm of growing oocytes, a diffuse labeling of the γ‐tubulin antibody was always detectable. In the growing ovarian follicles, immunolabeled spots were detected in the mono‐layered follicle cells which surrounded the early oocytes. In follicles with a polymorphic follicular epithelium, only the small follicle cells showed labeled spots. A weak and diffuse labeling was observed in the pyriform cells while in the enlarging intermediate cells the centrosomes degenerated like in the early oocytes. Our observations confirm that in P. sicula most of the oocyte growth is supported by the structural and functional integration of the developing oocyte with the pyriform nurse cells and suggest that their fusion with the oocyte results in an acquirement by these somatic cells of characteristics typical of the germ cells. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Summary Oocyte-follicle cell gap junctions inTribolium occur in all oogenetic stages studied. During early previtellogenesis the junctions are found exclusively between lateral membranes of oocyte microvilli and the membrane of prefollicle cells. In late previtellogenesis and vitellogenesis the junctions are located between the tips of oocyte microvilli and the flat membranes of the follicle cells. During previtellogenesis gap junctions are infrequent, whereas in the phase of yolk accumulation their number increases considerably, exceeding 17 junctions/m2 of the follicle cell membrane. It could be shown by microinjection of a fluorescent dye that gap junctions are in a functional state during vitellogenesis. Possible roles of heterologous gap junctions in oogenesis are discussed.  相似文献   

13.
Programmed cell death occurs as a normal part of oocyte development in Drosophila. For each egg that is formed, 15 germline-derived nurse cells transfer their cytoplasmic contents into the oocyte and die. Disruption of apoptosis or autophagy only partially inhibits the death of the nurse cells, indicating that other mechanisms significantly contribute to nurse cell death. Recently, we demonstrated that the surrounding stretch follicle cells non-autonomously promote nurse cell death during late oogenesis and that phagocytosis genes including draper, ced-12, and the JNK pathway are crucial for this process. When phagocytosis genes are inhibited in the follicle cells, events specifically associated with death of the nurse cells are impaired. Death of the nurse cells is not completely blocked in draper mutants, suggesting that other engulfment receptors are involved. Indeed, we found that the integrin subunit, αPS3, is enriched on stretch follicle cells during late oogenesis and is required for elimination of the nurse cells. Moreover, double mutant analysis revealed that integrins act in parallel to draper. Death of nurse cells in the Drosophila ovary is a unique example of programmed cell death that is both non-apoptotic and non-cell autonomously controlled.  相似文献   

14.
The changes in distribution and density of mitochondria and the level of mitochondrial RNA during Drosophila oogenesis were studied simultaneously in the 3 cell types ie follicle cells, nurse cells and oocyte, making up the egg chamber. Up to stage 6, mitochondrial density (mitochondrial and cellular areas ratio) was elevated and increased similarly in both follicle and nurse cells. Thereafter the mitochondrial density of follicle cells continued to increase and that of the nurse cells declined markedly while the nurse cell mitochondria assembled in dense groups and decreased in size. This can be related to a transfer of nurse cell cytoplasm, including mitochondria, to the oocyte. In the oocyte from stage 4 to stage 7 we observed a significant decrease of the mitochondrial density due to the absence of mitochondrial biogenesis. Then the cytoplasm transfer caused mitochondrial density to increase up to the level found in the nurse cells at the end of oogenesis. The mature oocyte contains enough mitochondria to supply 15 000 somatic cells. Our results strongly suggest that the variations in size, distribution and density of mitochondria relate to the particular energetic requirements of the different cell types during the first half of oogenesis. Later they relate to the developmental requirements of the nurse cells and the oocyte, in particular the storage of mitochondria in the oocyte. The level of mitochondrial RNA was studied through in situ hybridization. Throughout oogenesis the follicle and nurse cell RNA evolved similarly. Up to stage 9, there was no change in RNA densities in these cells, suggesting a correlation with the cell volume and/or the nuclear DNA content. Thereafter the cellular RNA concentration declined rapidly. In the oocyte the RNA concentration evolved differently especially from stage 10 to the end, the RNA density being stabilized. This can be related to the injection of nurse cell mitochondria, followed by their assignment to reserve status. Our results suggest that the mt RNA density is under extramitochondrial control mechanisms.  相似文献   

15.
The growth of the follicle and oocyte in the Indian gerbil (Tatera indica) was a continuous process. The relationship between follicle and oocyte or its nucleus was log linear, represented by the equation log Y =a +b logX.A linear relationship (Y =a +bX)existed between the oocyte and its nucleus. The number of stages I and II follicles varied significantly during the oestrous cycle. Maximum percentage of stage I follicles was observed during oestrus and metoestrus, while stage II follicles were abundant during dioestrus, metoestrus and pro-oestrus. These follicles were significantly more in number than other types of the follicles. The occurrence of comparatively larger follicles during pro-oestrus and the presence of newly formed corpora lutea at oestrus, indicated ovulation in the early oestrus.  相似文献   

16.
The temporal and spatial pattern of replication of chorion gene clusters in follicle cells during oogenesis inDrosophila melanogaster andDrosophila nasuta was examined by [3H thymidine autoradiography and byin situ hybridization with chorion gene probes. When pulse labelled with [3H] thymidine, the follicle cells from stage 10–12 ovarian follicles of bothDrosophila melanogaster and,Drosophila nasuta often showed intense labelling at only one or two sites per nucleus.In situ hybridization of chorion gene probes derived fromDrosophila melanogaster with follicle cell nuclei ofDrosophila melanogaster andDrosophila nasuta revealed these discrete [3H] thymidine labelled sites to correspond to the two amplifying chorion gene clusters. It appears, therefore, that in spite of evolutionary divergence, the organization and programme of selective amplification of chorion genes in ovarian follicle cells have remained generally similar in these two species. The endoreplicated and amplified copies of each chorion gene cluster remain closely associated but the two clusters occupy separate sites in follicle cell nucleus.  相似文献   

17.
Ultrastructural observations on oogenesis in Drosophila   总被引:4,自引:0,他引:4  
The ultrastructure of the follicle cells and oocyte periplasm is described during the stages of oogenesis immediately prior to, during, and immediately subsequent to, vitellogenesis. A number of features have not been described previously in Drosophila. Some yolk appears prior to pinocytosis of blood proteins. However, most of the protein yolk forms while the periplasm is filled with micropinocytotic invaginations and tubules derived from the oolemma. These tubules retain the internal layer of material characteristic of coated vesicles and are found to fuse with yolk spheres. No accumulation of electron-dense material in the endoplasmic reticulum or Golgi of the oocyte is found. Both trypan blue and ferritin are accumulated by the oocyte. The follicle cells have an elaborate endoplasmic reticulum during the period of maximum yolk accumulation. Adjacent cells are joined at their base by a zonula adhaerens, forming a band around the cells, and by plaques of gap junctions. Gap junctions are also present between nurse cells and follicle cells. During chorion formation, septate junctions also appear between follicle cells, adjacent to the zonula adhaerens.  相似文献   

18.
Summary The autonomous synthesis of yolk proteins in ovarian follicles ofDrosophila melanogaster was analyzed. Vitellogenic follicles were labelled with35S-methionine in vitro and the newly synthesized yolk proteins were separated by SDS-polyacrylamide gel electrophoresis. Possible contamination of the follicle preparations caused by adhering fat body cells could be excluded by culturing follicles in males prior to labelling in vitro. When labelled follicles were cut at the nurse cell/oocyte border the three yolk proteins (YP1, YP2, YP3) were found only in posterior fragments containing ooplasm and follicle cells, whereas two radioactive protein bands (A and B) were detected in nurse cells (anterior fragments). The yolk proteins of these five bands were characterized by peptide mapping. Band A protein, migrating a little more slowly than YP2, is closely related to both YP1 and YP2 while band B contains a yolk protein which is very similar to YP3. Hence, the nurse cells have been identified as a site of vitellogenin synthesis within the ovary ofDrosophila.Supported by the Deutsche Forschungsgemeinschaft, SFB 46  相似文献   

19.
As a response to gonadotropin, amphibian ovarian follicles primarily synthesize and secrete estradiol-17 β (E2) during vitellogenesis and progesterone (P) when fully grown. Stage IV (vitellogenic) and stage VI (full-grown) ovarian follicles from Xenopus laevis, as well as intermediate sizes, were used to explore this change in steroidogenesis. Optimum steroidogenesis occurred in both stage IV and stage VI follicles exposed for 6 h to 20 IU human chorionic gonadotropin/mL. Although the total amounts of steroid found were about the same, the E2/P ratios ranged from 26 to 35 for intact stage IV follicles, but only 0.02–0.03 for intact stage VI follicles. Steroid-producing follicle cells were isolated from stage IV and stage VI follicles by non-enzymatic procedures, were washed and were tested for steroidogenic activity in the absence of oocytes. In both cases, P was the predominant steroid produced (E2/P = 0.004–0.04), so the presence of stage IV, but not stage VI, oocytes appears to be necessary for E2 production as a response to gonadotropin. Octanol had no significant effect on the E2/P ratio of intact stage IV follicles. Dissected oocyte/follicle cell preparations from stage IV follicles were also periodically challenged with gonadotropin over 72 h, during which time most follicle cells detached from the oocyte and formed a monolayer over the bottom of the culture dish. The relatively high E2/P ratios for such preparations showed no significant change when stimulated with gonadotropin at various times over the 72 h, as long as the medium was not replaced. We conclude that the estrogenic effect of stage IV oocytes is most likely mediated by a secretory product rather than by gap junctions or by cell contact. Because the X. laevis oocyte has been shown to be a self-differentiating cell, the steroidogenic shift that occurs in developing ovarian follicles appears to be fundamentally regulated by the growing oocyte as it undergoes a physiological change rather than by different gonadotropins.  相似文献   

20.
The maturation of animal oocytes is highly sensitive to nutrient availability. During Drosophila oogenesis, a prominent metabolic checkpoint occurs at the onset of yolk uptake (vitellogenesis): under nutrient stress, egg chambers degenerate by apoptosis. To investigate additional responses to nutrient deprivation, we studied the intercellular transport of cytoplasmic components between nurse cells and the oocyte during previtellogenic stages. Using GFP protein-traps, we showed that Ypsilon Schachtel (Yps), a putative RNA binding protein, moved into the oocyte by both microtubule (MT)-dependent and -independent mechanisms, and was retained in the oocyte in a MT-dependent manner. These data suggest that oocyte enrichment is accomplished by a combination of MT-dependent polarized transport and MT-independent flow coupled with MT-dependent trapping within the oocyte. Under nutrient stress, Yps and other components of the oskar ribonucleoprotein complex accumulated in large processing bodies in nurse cells, accompanied by MT reorganization. This response was detected as early as 2 h after starvation, suggesting that young egg chambers rapidly respond to nutrient stress. Moreover, both Yps aggregation and MT reorganization were reversed with re-feeding of females or the addition of exogenous insulin to cultured egg chambers. Our results suggest that egg chambers rapidly mount a stress response by altering intercellular transport upon starvation. This response implies a mechanism for preserving young egg chambers so that egg production can rapidly resume when nutrient availability improves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号