首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The prepro-peptide of fungal aspartic proteinase, Mucor pusillus rennin, is useful as a secretion leader for efficient secretion of human growth hormone (HGH) from Saccharomyces cerevisiae. For secretion by yeast cells of HGH with the same NH2 terminus as native HGH, an artificial Lys-Arg linker, which is one of the potential KEX2 recognition sequences, was introduced at the junction between the M. pusillus rennin secretion leader and mature HGH. The HGH directed by this construction was the same size as native HGH, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and amino acid sequencing of its NH2 terminus revealed that the secretion leader peptide was removed correctly at the COOH-terminal side of the Lys-Arg linker. On the other hand, when the same plasmid was expressed in a kex2 mutant strain, unprocessed HGH of a higher molecular weight was secreted, indicating that no proteolytic cleavage at the Lys-Arg site occurred. These results clearly showed that the leader peptide with the Lys-Arg linker was recognized and specifically cleaved by the yeast KEX2 protease. The mature HGH purified from yeast culture medium was indistinguishable from native HGH in biological activity, determined by the adipocyte conversion assay, and in secondary structure, determined by circular dichroism spectroscopy.  相似文献   

2.
An aspartic proteinase, Mucor pusillus rennin (MPR), of filamentous fungus Mucor pusillus, is efficiently secreted from a transformant of Saccharomyces cerevisiae containing the intact MPR gene. To test the usefulness of the MPR leader peptide in secretion of heterologous proteins from yeast cells, several plasmids encoding the fusion proteins composed of different parts of the NH2-terminal region of prepro-MPR and human growth hormone (hGH) were constructed. The parts of the leader peptide upstream of hGH were the whole prepro-peptide following the NH2-terminal region of mature MPR in JGH1, the intact pre-sequence and a part of the pro-sequence in JGH2, and the putative signal sequences of the NH2-terminal 18 and 22 amino acids in JGH3 and JGH7, respectively. When the hGH genes fused to these leader sequences were expressed in yeast cells under the control of the yeast GAL7 promoter, proteins of various sizes immunoreactive with the anti-hGH antibody were secreted into the medium. Among the plasmids mentioned above, JGH2 directed the greatest secretion of the protein of 23 kilodaltons in size, which contained the expected NH2-terminal amino acid sequence of an additional eight amino acids derived from the pro-peptide of MPR. The addition of the GAL10 terminator downstream of the hGH gene in JGH2 resulted in a greater than three- to fivefold increase in the secretion, whereas the insertion of the GAL4 gene, which is a positive regulator for the GAL system, had no significant effect. The improved yield of the total protein of hGH secreted into the medium reached approximately 10 mg/liter.  相似文献   

3.
An aspartic proteinase, Mucor pusillus rennin (MPR), of filamentous fungus Mucor pusillus, is efficiently secreted from a transformant of Saccharomyces cerevisiae containing the intact MPR gene. To test the usefulness of the MPR leader peptide in secretion of heterologous proteins from yeast cells, several plasmids encoding the fusion proteins composed of different parts of the NH2-terminal region of prepro-MPR and human growth hormone (hGH) were constructed. The parts of the leader peptide upstream of hGH were the whole prepro-peptide following the NH2-terminal region of mature MPR in JGH1, the intact pre-sequence and a part of the pro-sequence in JGH2, and the putative signal sequences of the NH2-terminal 18 and 22 amino acids in JGH3 and JGH7, respectively. When the hGH genes fused to these leader sequences were expressed in yeast cells under the control of the yeast GAL7 promoter, proteins of various sizes immunoreactive with the anti-hGH antibody were secreted into the medium. Among the plasmids mentioned above, JGH2 directed the greatest secretion of the protein of 23 kilodaltons in size, which contained the expected NH2-terminal amino acid sequence of an additional eight amino acids derived from the pro-peptide of MPR. The addition of the GAL10 terminator downstream of the hGH gene in JGH2 resulted in a greater than three- to fivefold increase in the secretion, whereas the insertion of the GAL4 gene, which is a positive regulator for the GAL system, had no significant effect. The improved yield of the total protein of hGH secreted into the medium reached approximately 10 mg/liter.  相似文献   

4.
The Mucor rennin gene encoding a prepro form of the fungal aspartic proteinase from Mucor pusillus was expressed under the control of the yeast GAL7 promoter in Saccharomyces cerevisiae. The mature M. pusillus rennin secreted efficiently by yeast was a highly glycosylated protein. Analysis by a combination of site-directed mutagenesis of each of the three possible glycosylation sites and treatment of the secreted M. pusillus rennins with endo-beta-N-acetylglucosaminidase H revealed that the mature yeast M. pusillus rennin contained two asparagine-linked glycosylation sites among the three possible glycosylation sites. A mutation of the 2 glycosylated asparagine residues of M. pusillus rennin resulted in significant decreases in the level of secretion by yeast cells. In addition, the extent of glycosylation of M. pusillus rennin was found to affect the enzyme properties such as milk-clotting and proteolytic activities.  相似文献   

5.
Somatostatin is a 14-amino-acid peptide hormone that is proteolytically excised from its precursor, prosomatostatin, by the action of a paired-basic-specific protease. Yeast (Saccharomyces cerevisiae Mat alpha) synthesizes an analogous peptide hormone precursor, pro-alpha-factor, which is proteolytically processed by at least two separate proteases, the products of the KEX2 and STE13 genes, to generate the mature bioactive peptide. Expression in yeast of recombinant DNAs encoding hybrids between the proregion of alpha-factor and somatostatin results in proteolytic processing of the chimeric precursors and secretion of mature somatostatin. To determine if the chimeras were processed by the same enzymes that cleave endogenous pro-alpha-factor, the hybrid DNAs were introduced into kex2 and ste13 mutants, and the secreted proteins were analyzed. Expression of the pro-alpha-factor-somatostatin hybrids in kex2 mutant yeast resulted in secretion of a high molecular weight hyperglycosylated precursor. No mature somatostatin was secreted, and there was no proteolytic cleavage at the Lys-Arg processing site. Similarly, in ste13 yeast, only somatostatin molecules containing the (Glu-Ala)3 spacer peptide at the amino terminus were secreted. Our results demonstrate that in yeast processing mutants, the behavior of the chimeric precursors with respect to proteolytic processing was exactly as that of endogenous pro-alpha-factor. We conclude that the same enzymes that generate mature alpha-factor proteolytically process hybrid precursors. This suggests that structural domains of the proregion rather than the mature peptide are recognized by the processing proteases.  相似文献   

6.
The yeast Yarrowia lipolytica secretes an alkaline extracellular protease (AEP). It is first synthesized as a precursor comprising a putative signal peptide, a stretch of 10 X-Ala or X-Pro sequences that are substrates for a dipeptidyl aminopeptidase, a large pro-region that contains a glycosylation site and two Lys-Arg sites that can be cleaved by a KEX2-like endoprotease and finally the mature protease itself. A defect in the XPR6 (KEX2-like) gene results in the secretion of an inactive proenzyme (Matoba, S., and Ogrydziak, D. M. (1989) J. Biol. Chem. 264, 6037-6043), showing that the proregion inhibits protease activity. To determine whether the proregion plays an additional role in protease secretion, we have generated deletions and point mutations in the corresponding region of the structural gene. In this paper we examine the effects of these mutations on AEP secretion and maturation and show that the proregion is essential for its secretion. All deletions affecting the proregion resulted in the intracellular accumulation of unprocessed precursors. Deletion of the glycosylation site in the proregion resulted in the production of an unglycosylated precursor that was secreted and matured correctly at 18 degrees C but accumulated in the cells at 28 degrees C. From these results, we propose that the AEP prosequence plays an additional essential role in guiding the proper folding of the protein into a conformation compatible with secretion.  相似文献   

7.
Salivary glands of the leech Haementeria officinalis contain a protein, leech antiplatelet protein (LAPP), that specifically blocks collagen-mediated platelet aggregation (Connolly, T. M., Jacobs, J. W., and Condra, C. (1992) J. Biol. Chem. 267, 6893-6898). Degenerate oligonucleotides whose sequences were derived from two short peptides from V8 digests of the native LAPP were used as primers to generate a polymerase chain reaction (PCR) product which contains the cDNA region coding for the sequence between these two peptides. Using this PCR product as a hybridization probe, phage containing cDNA clones were isolated containing the entire deduced amino acid sequence for LAPP. Computer analysis of the amino acid sequence predicts a peptidase cleavage site between a 21-residue pre-peptide and a mature protein of 126 amino acids. A DNA insert to express the predicted mature LAPP protein was generated by PCR amplification using phage-derived cDNA clones as a substrate. This insert encoded a fusion protein with the leader sequence of the yeast alpha mating factor and the mature LAPP cDNA. These PCR products were cloned into the yeast expression vector pKH4 alpha 2. A KEX 2 Lys-Arg endopeptidase cleavage site was placed NH2-terminal to the predicted mature protein. This vector transfected into the yeast Saccharomyces cerevisiae directs expression of a secreted mature protein at levels up to 200 mg of LAPP/liter of culture medium. The recombinant protein was comparable to native LAPP in its electrophoretic mobility, its reactivity with anti-LAPP antisera, and its biological activity including inhibition of collagen-stimulated platelet aggregation and the adhesion of platelets to collagen. Availability of significant quantities of recombinant LAPP opens the way to further biochemical structure/function studies and to studies on the effects of an inhibitor of collagen-stimulated platelet aggregation in vivo.  相似文献   

8.
Yeast has been analysed for its potential to secrete an ovine member of the type-I interferon (IFN) family, trophoblastin (oTP-1). The processing potential of the yeast KEX2 gene product (KEX2p) was evaluated using gene oTP-1 fused to the pre-pro sequence encoding the pre-pro peptide of the yeast alpha-factor precursor. High-level accumulation of nonprocessed (unmatured) recombinant oTP-1 (re-oTP-1) was observed in the medium. In order to short-circuit the limiting activity of KEX2p and to obtain a fully matured re-oTP-1, secretion was directed using a pre::oTP-1 fusion, relying only on signal peptidase-dependent processing. However, secretion of oTP-1 was impaired. High-level secretion was restored when the gene product contained a peptide spacer between oTP-1 and the signal peptidase cleavage site. The oTP-1 variant was shown to have an extended N terminus. An N-extended form was examined further and shown to have the correct size. Surprisingly, the variant retained its in vitro and in vivo biological activities. This system is likely to represent a general method for high-level secretion of type-I IFNs.  相似文献   

9.
Summary Two kinds of yeast secretion vectors were constructed by site-directed mutagenesis of the invertase signal sequence and ligation of synthetic oligonucleotides coding appropriate signals. Each has a cloning site for a foreign gene preceded by a sequence encoding either the signal peptide cleavage site or a Lys-Arg sequence which is a cleavage site for the product of the KEX2 gene. Both vectors were able to direct the expression and secretion of mouse amylase. One of them has a SalI site within the signal sequence, and an attempt to clone sequences enhancing secretion of amylase with this vector is reported.  相似文献   

10.
An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.  相似文献   

11.
The Mucor rennin gene encoding a prepro-form of the fungal aspartic proteinase from Mucor pusillus was expressed under the control of the yeast GAL7 promoter in Saccharomyces cerevisiae. An inactive zymogen of the enzyme with the 44-amino-acid pro-sequence was identified in the medium during the initial stage of cultivation. Processing of the purified zymogen to the mature enzyme proceeded autocatalytically under the acidic conditions. The rate of processing was accelerated by an increase in the concentration of the zymogen or addition of the mature enzyme. The in vitro processing was inhibited by inhibitors for the aspartic proteinases. The zymogen with no proteinase activity due to a mutation at the active site residue, Asp, was still processed at a relatively slower rate in a wild-type strain of yeast, but no processing occurred in the pep4-3 mutant strain of S. cerevisiae deficient in yeast proteinase A. Thus, Mucor rennin is excreted in a form of zymogen, which is then processed in the yeast secretion pathway mainly by the autocatalytic proteolysis but, alternatively, by a proteinase of yeast.  相似文献   

12.
The Saccharomyces cerevisiae secretory process was studied by evaluating secretion efficiency, processing efficiency, and the efficiency of protein folding for hybrid proteins containing the yeast prepro-alpha-factor leader region. Secretion of three proteins, beta-endorphin, calcitonin, and a consensus alpha-interferon (IFN-Con1), were compared in terms of secretion efficiency into the culture medium, beta-Endorphin and calcitonin, both small proteins, were found to be efficiently secreted from logarithmically grown cells. In contrast, the larger IFN-Con1 accumulated in the periplasmic space and cell wall. The glycosylated, unprocessed prepro-alpha-factor/IFN-Con1 fusion protein was also found to be secreted into the culture medium. The presence of (Glu-Ala) dipeptides in the alpha-factor spacer peptide increased the efficiency of cleavage at Lys-Arg in the prepro-alpha-factor/IFN-Con1 protein fusion. Purified secreted IFN-Con1 was structurally characterized to determine the effect of passage through the yeast secretory pathway on the fidelity and efficiency of protein folding. The disulfide structure of the secreted protein was found to be identical with that reported for the native human alpha-interferons.  相似文献   

13.
Killer strains of Kluyveromyces lactis secrete a toxin which presumably is processed during secretion from a larger precursor. Analysis of the sequence of the K. lactis killer toxin gene predicts that the first 16 amino acids at the amino terminus of the protein should represent its leader peptide. We have tested the capability of this leader peptide to direct secretion of a protein fused to it by inserting a synthetic oligonucleotide identical to the sequence of the putative leader peptide into a yeast expression vector. Subsequently, the cDNA coding for the secreted active portion of the human interleukin 1 beta (IL-1 beta) was fused to the leader peptide sequence of the killer toxin. This construction in Saccharomyces cerevisiae is capable of directing synthesis and secretion of correctly processed IL-1 beta into the culture medium.  相似文献   

14.
Signal peptide of Bacillus subtilis alpha-amylase   总被引:4,自引:0,他引:4  
Mature alpha-amylase of Bacillus subtilis is known to be formed from its precursor by the removal of the NH2-terminal 41 amino acid sequence (41 amino acid leader sequence). DNA fragments coding for short sequences consisting of 28 (Pro as the COOH terminus) 29 (Ala), 31 (Ala), and 33 (Ala) amino acids from the translation initiator, Met, in the leader sequence were prepared and fused in frame to the DNA encoding the mature alpha-amylase. The secretion activity of the 33 amino acid sequence was nearly twice as high as that of the parental 41 amino acid sequence, whereas the activity of the 31 amino acid sequence was 75% of that of the parent. In contrast, almost no secretion activity was observed with the 28 and 29 amino acid sequences. The signal peptide cleavage site of the precursor expressed from the plasmid encoding the 33 amino acid sequence was located between Ala and Leu at positions 33 and 34 and that from the 31 amino acid sequence between Thr and Ala at positions 33 and 34. The NH2-terminal amino acid from the latter corresponded to the 3rd amino acid of the mature enzyme. These results indicated that the functional signal peptide of the B. subtilis beta-amylase consists of the first 33 amino acids from the initiator, Met.  相似文献   

15.
The secretion of Bacillus stearothermophilus L1 lipase in Saccharomyces cerevisiae was investigated by employing a fusion partner, a cellulose-binding domain (CBD) from Trichoderma harzianum endoglucanase II (THEG). The CBD was connected to the N-terminal of L1 lipase through an endogenous linker peptide from THEG. The expression cassette for the fusion protein in S. cerevisiae was constructed using the -amylase signal peptide and the galactose-inducible GAL10 promoter. Secretion of CBD-linker-L1 lipase by this fusion construct was dramatically 7-fold enhanced, compared with that of the mature L1 lipase without CBD-fusion. The fusion protein was secreted into the culture medium, reaching levels of approximately 1.3 g/l in high-cell-density fed-batch cultures. Insertion of a KEX2 cleavage site into the junction between CBD-linker and L1 lipase resulted in the same level of enhanced secretion, indicating that the CBD-linker fusion probably plays a critical role in secretion from endoplasmic reticulum to Golgi apparatus. Therefore, the CBD from THEG can be used both as an affinity tag and as a secretion enhancer for the secretory production of heterologous proteins in S. cerevisiae, since in vivo breakage at the linker was almost negligible.  相似文献   

16.
A Miyajima  M W Bond  K Otsu  K Arai  N Arai 《Gene》1985,37(1-3):155-161
We have constructed a general expression vector which allows the synthesis and secretion of processed gene products in Saccharomyces cerevisiae. This vector contains yeast DNA, including the promoter of the mating pheromone (alpha-factor), its downstream leader sequence, and the TRP5 terminator. A cDNA [encoding mature mouse interleukin-2 (IL-2); Yokota et al., Proc. Natl. Acad. Sci. USA 82 (1984) 68-72] was fused immediately downstream to the alpha-factor leader sequence. The resulting recombinant plasmid directed the synthesis of mature mouse IL-2 in S. cerevisiae, with most of the T-cell growth-factor (TCGF) activity secreted into the culture fluid and extracellular space. TCGF activities in the cell extract, as well as in the culture fluid, increased in parallel with cell growth. Production of mature mouse IL-2 was inhibited by tunicamycin (TM), with precursor molecules accumulating in the cell extract. The precursor was processed accurately at the junction between the alpha-factor peptide leader sequence and the coding sequence downstream, yielding mature IL-2. The Mr of the secreted mouse IL-2 determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) was 17 kDal, a value expected for the mature mouse IL-2 polypeptide based on the nucleotide (nt) sequence.  相似文献   

17.
Expression systems of human and silkworm lysozymes were constructed using the methylotrophic yeast Pichia pastoris as a host. The leader sequence and its prepro peptide of alpha-factor (a peptide pheromone derived from yeast) and the native signal sequences of these lysozymes, were used as secretion signals. When the alpha-factor leader is used as the signal sequence, human lysozyme is secreted at a much higher level than is silkworm lysozyme. On the other hand, silkworm lysozyme, when its native signal is used, is secreted more efficiently than human lysozyme. Therefore, we expected that human lysozyme cDNA with a silkworm native signal would be secreted more efficiently than human lysozyme with its native signal. However, its level of expression was not increased. This result indicates that the native signal of silkworm lysozyme does not promote the secretion of the lysozyme, but rather alpha-factor leader inhibits the secretion. Silkworm lysozyme with the alpha-factor leader is so unstable that it could be easily attacked by some proteases and our findings suggest that the level of expression of heterologous protein with signal peptides and its stability are greatly affected by the selection of the appropriate secretion signal sequence.  相似文献   

18.
We have detected proteolytic processing of a form of exoglucanase representative of the endoplasmic reticulum (form A). This processing did not take place when form A was obtained from protoplasts lysed in the presence of either EDTA or leupeptin, two wel-characterized inhibitors of KEX2 endoprotease from Saccharomyces cerevisiae. Sequencing of the amino terminus of an A-like form of enzyme secreted by a kex2 mutant indicated the presence of 4 amino acids, with a pair of basic residues (Lys-Arg) at their carboxyl side, preceding the amino terminus of the wild-type external exoglucanase.  相似文献   

19.
Recombinant human erythropoietin (rhEPO) has been purified to apparent homogeneity from a Chinese hamster ovary cell line expressing a cDNA clone of the human gene. NH2-terminal sequencing of the recombinant hormone indicates that the 27-residue leader peptide is correctly and consistently cleaved during secretion of the recombinant protein into conditioned medium, yielding the mature NH2 terminus (Ala-Pro-Pro-Arg...). Analysis of the COOH terminus of rhEPO by peptide mapping and fast atom bombardment mass spectrometry (FABMS) demonstrates that the arginyl residue predicted to be at the COOH terminus (based on confirmation of both genomic and cDNA sequences) is completely missing from the purified protein. The truncated form of the recombinant hormone, designated des-Arg166 rhEPO, displays an in vivo specific activity of greater than 200,000 units/mg protein. Structural characterization of natural human urinary EPO (uEPO) by peptide mapping and FABMS reveals that the urinary hormone is also missing the COOH-terminal Arg166 amino acid residue, a modification that remained undetected until now. There is no evidence of further proteolytic processing at the COOH terminus beyond specific removal of the Arg166 amino acid residue in either rhEPO or uEPO. On the basis of the FABMS data, we propose that the physiologically active form of the hormone circulating in plasma and interacting with target cells in vivo is des-Arg166 EPO.  相似文献   

20.
N Tonouchi  H Shoun  T Uozumi    T Beppu 《Nucleic acids research》1986,14(19):7557-7568
The aspartate protease of Mucor pusillus (Mucor pusillus rennin; MPR) is a milk-clotting enzyme used in the cheese industry. The partial amino acid sequence of MPR was determined and oligonucleotide probes were synthesized for cloning of the MPR gene. A clone giving positive hybridization with the probes was selected from the cosmid library. Sequencing of the cloned DNA revealed an open reading frame of 1281 bp without introns which encodes 361 amino acids for the expected MPR with an NH2-terminal extension of 66 amino acids. MPR seems to be synthesized as a prepro enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号