首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

2.
Question: What role does air humidity play as an environmental factor for the abundance and distribution of temperate woodland herbs? Location: Beech forests on calcareous soils in southern lower Saxony, central Germany. Methods: The abundance of woodland herb species and total herb cover were investigated in 60 plots with contrasting exposure, slope angle and relief type. On all plots, air humidity, air temperature, soil moisture, photosynthetically active radiation, pH (H2O) and concentration of salt‐exchangeable Ca, Mg and K were measured. Species‐environment relationships were analysed with multiple regression analysis and CCA. Results: Air humidity (RH), soil moisture and the concentration of exchangeable Ca and K, but not light, C/N ratio and the concentration of exchangeable Mg were identified as the most important abiotic factors influencing the cover of the most abundant plant species and total herb cover. RH varied substantially across the different forest floor site types and influenced species abundance independent of soil moisture. In several species (including Mercurialis perennis and Impatiens noli‐tangere), RH was found to be a key environmental factor. Other species such as Aegopodium podagraria and Lamiastrum galeobdolon depended more on elevated soil moisture, while RH was less important. Conclusions: This study showed that the distribution of widespread temperate woodland herb species depends on high air humidity, and that certain sensitive species do not occur at sites with reduced air humidity even though soil moisture is high. Thus, high air humidity and ample soil moisture are key abiotic factors in beech forests on calcareous soils. Shade level (PAR) was found to be of secondary importance.  相似文献   

3.
The seasonal dynamics of forest floor biomass, pattern of litter fall and nutrient return in Central Himalayan oak forests are described. Fresh and partially decomposed litter layers occur throughout the whole year in addition to herbaceous vegetation. The highest leaf litter value is found in April and May and the minimum in September. Partially and largely decomposed litter tended to increase from January to May with a slight decline in June. The wood litter peaked in March and April. The relative contribution of partially decomposed litter to the forest floor remains greatest the year round. The maximum herbaceous vegetation development was found in September with a total annual net production of 104.3 g m-2yr-1. The total calculated input of litter was 480.8 g m-2yr-1. About 68% of the forest floor was replaced each year with a subsequent turnover time of 1.47 yr. The total annual input of litter ranged from 664 (Quercus floribunda site) –952 g m-2 (Q. lanuginosa site), of which tree, shrub and herbaceous litter accounted for respectively 72.0–86.3%, 6.4 – 19.4% and 5.2 – 8.6%. The annual nutrient return through litter fall amounted to (kg ha-1) 178.0 – 291.0 N, 10.0 – 26.9 P, 176.8 – 301.6 Ca, 43.9 – 64.1 K and 3.98 – 6.45 Na. The tree litter showed an annual replacement of 66.0 – 70.0%, for different nutrients the range was 64 and 84%.  相似文献   

4.
The Verrucomicrobia constitute a newly discovered division of the Bacteria identified as a numerically abundant component of soil microbial communities in numerous sites around the world. The relative abundance of rRNA from Verrucomicrobia was investigated in the soil to examine the influence of specific environmental factors on the distribution of Verrucomicrobia and to better understand the distribution of this group in terrestrial ecosystems. The abundance of the verrucomicrobial rRNA was determined by using a novel oligonucleotide probe that is specific for verrucomicrobial 16S rRNA. The abundance of verrucomicrobial 16S rRNA in soil microbial communities was determined in relation to plant community composition and soil management history over a period of 2 years. Additional samples were analyzed to determine if verrucomicrobial rRNA relative abundance changes in relation to either soil depth or soil moisture content. The Verrucomicrobia composed 1.9+/-0.2% of the microbial community rRNA present in the 85 soil samples examined. The distribution of verrucomicrobial rRNA in the soil reveals that Verrucomicrobia are significantly affected by environmental characteristics that change in relation to time, soil history, and soil depth, and reveals that a statistically significant amount of the variation in verrucomicrobial rRNA abundance can be explained by changes in soil moisture content.  相似文献   

5.
Abstract. This study describes the biomass and net primary productivity of the forests of Central Himalaya occurring in areas where vegetation ranges from close-canopy broad-leaved forest to stunted open-canopy timberline vegetation. The forests studied were Acer cappadocicum forest at 2750 m, Betula utilis forest at 3150 m, and Rhododendron campanulatum forest at 3300 m altitude in Central Himalaya. With the rise in altitude the forest biomass decreased from 308.3 ton/ha in Acer forest to 40.5 ton/ha in Rhododendron forest. The decrease in net primary productivity was less steep, from 19.6 ton/ha/yr in Acer forest to 10.0 ton/ha/yr in Rhododendron forest. The production efficiency of leaves (net production per unit leaf weight) in these forests is higher than in low altitude broad-leaved forests of Central Himalaya, i.e. from 2.89 in Acer forest to 3.41 g net production/g leaf biomass/yr, against 0.81-1.55 at lower altitudes.  相似文献   

6.
恢复梯度上华中亚热带森林生物多样性、林分因子及功能特性对生物量、生产力的影响 草地群落上进行的控制实验大都发现生物多样性对生态系统功能有显著促进作用。然而,在天然林中,多样性与林分因子、群落功能特性的相对作用大小仍存在争议。本文在森林恢复梯度上,研究这3类因素对生物量和生产力的相对影响。我们在湖北神农架设置了处于不同恢复阶段的24块(600 m2)亚热 带森林样地,计算了林分生物量和生产力。选择5个关键的植物功能性状,并计算了群落的功能多样性(功能丰富度、功能均匀度和功能离散度)和性状的加权平均值(CWM)。使用一般线性模型(GLMs)、变异分离等方法探究林分因子(密度、林龄、群落最大树高等)、功能特性、物种和功能多样性对生物量和生产力的相对重要性。研究结果表明,随着森林恢复,林分生物量和生产力显著增加,群落物种丰富度显著增加,而功能离散度显著降低。变异分离结果表明,多样性对生物量和生产力的单独效应不显著,但可能通过与林分因子和功能特性的协同效应来影响生物量和生产力。总体而言,我们发现林分因子对亚热带森林生物量和生产力的影响最大,功能特性显著影响生产力,但不影响生物量。这些结果说明,在森林经营中,调整林分结构和群落物种特性是提高森林碳储量和固碳潜力的有效途径。  相似文献   

7.
8.
1. Density gradients of cladocerans and copepods were generated in an enclosure experiment to compare the impact on the plankton of a filter feeder (Daphnia hyalina × galeata) with that of more selective feeders (calanoid and cyclopoid copepods). The experiment was conducted in situ over 25 days during spring in a mesotrophic lake, Schöhsee, Germany. 2. The plankton community was monitored regularly. Daphniids were able to graze on the phytoplankton present, which mainly consisted of small (<1000 μm3) species, whereas copepods did not show any impact on algae. 3. At the end of the experiment, Daphnia and remaining cyclopoid copepods were harvested and sorted manually, prior to analyses for stable isotopes of carbon and nitrogen. Daphniids from mesocosms stocked purely with differing densities of Daphnia showed little variability in stable isotope values, whereas those that thrived in enclosure bags together with copepods exhibited lower δ13C values. 4. The change in Daphniaδ13C indicates a change of food sources, modified by the presence of the copepods: the higher the mean abundance of copepods in the enclosures, the more 13C‐depleted the daphniids. Increasing abundance of high nucleic acid (HNA) bacteria in the copepod bags may account for the trend in Daphniaδ13C via increased grazing on the bacteria themselves, or via grazing on phytoplankton utilising isotopically light CO2 from respiratory release. 5. Cyclopoid copepod stable isotope signatures were related to Daphnia and copepod abundances in copepod bags, suggesting that cyclopoids preyed on the available zooplankton.  相似文献   

9.
10.
Herb layer richness and composition of four forest types and three different management treatments were investigated in 16 deciduous forest stands of northern Germany. Specifically, we compared the species richness and composition occurring in mature forest stands that were single-tree and group selection harvested to those in unmanaged reference stands. Mean species richness of all herb layer species increased significantly with increasing harvest severity. When analyzing plant groups separately, it became obvious that this overall pattern was not consistent. While a negative relationship was detected between vernal herb richness and harvest severity, group selection harvest significantly increased species richness of summer herbaceous forest species and generalists. Woody species richness was not related to harvest severity. Community composition of the spring aspect was not significantly affected by selection harvest, whereas herb layer species composition in the summer aspect differed significantly among the three harvest treatments. A dominance of highly competitive shrub and generalist species was confined to some parts of the most intensively harvested stands. Overall, our results indicate that the herb layer community was not severely adversely affected by selection harvest at the intensities used in the studied stands. It is suggested that selection harvest systems may be feasible tools with which to conserve local forest vascular plant diversity and at the same time to meet the demand for timber products. However, information about forest history and the implementation of the selection harvest system are basic requirements when interpreting the results of studies on understorey response to selection harvest.  相似文献   

11.
城市森林是生态系统重要碳库,其土壤呼吸是构成陆地土壤碳循环的重要环节。为了研究全球氮沉降增加背景下城市森林土壤呼吸动态变化及影响因素,本研究选取安徽省合肥市蜀山森林公园典型城市森林为研究对象,通过添加0(CK)、50(LN)、100(HN) kg N·m-2·a-1硝酸铵试验,对其土壤呼吸速率、温湿度及理化性质进行动态观测。结果表明: 城市森林土壤呼吸具有明显的季节差异,氮添加没有改变土壤呼吸季节动态特征;土壤呼吸与土壤温度存在显著相关性,土壤温度与土壤湿度的交互作用能更好地解释土壤呼吸的变异;氮添加在一定程度上改变了土壤呼吸的温度敏感性,其指数Q10值表现为LN(2.12)>CK(2.10)>HN(2.05);不同氮添加条件下,土壤呼吸与土壤硝态氮、溶解性有机碳、pH、碳氮比存在显著相关关系;氮添加对土壤呼吸的促进作用主要表现在生长季,对非生长季土壤呼吸则表现出轻微的抑制作用。  相似文献   

12.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   

13.
Olevi Kull  Anne Aan 《Ecography》1997,20(2):146-154
The proportional share of graminoid and forb life-form in the herbaceous layer was investigated along a productivity gradient at Laelatu, western Estonia With an increase in the herbaceous layer standing crop from 43 5 to 723 7 g m−2 the graminoid life-form became dominant in total above-ground mass and in species number Three hypotheses to better explain competitive ability of graminoids were tested 1) graminoids are able to form higher foliage, 2) they are able to distribute foliage nitrogen in a more beneficial way, 3) they have better nitrogen use efficiency 21 sample plots 50 × 50 cm were harvested All above-ground parts of vascular plants were removed by two canopy layers Vertical separation of layers were made according to the height of half light interception A species list was compiled, total and leaf masses and leaf nitrogen content of both life-forms were measured by layer ANOVA showed that there were no significant differences in vertical distribution of foliage or foliage nitrogen between life-forms in the productivity gradient, and hypotheses 1) and 2) are not supported by our data-set Hypothesis 3) is approved partly as the nitrogen concentration in graminoid foliage was 20% less than in forbs If one supposes that nitrogen retention time is equal in both life-forms then graminoids must have higher nitrogen use efficiency when compared to forbs Although the influence of life-form x productivity interaction on leaf nitrogen concentration was not significant, there was a tendency that difference in leaf mass to nitrogen ratio of the two life-forms increased with increasing incident light Thus, we can hypothesize that graminoid species dominate in high productive plots where the incident light intensity is also higher due to their better nitrogen use efficiency when compared to forb species  相似文献   

14.
15.
16.
17.
迄今生物多样性与生态系统功能关系的研究主要在物种组成随机配置的人工生态系统中进行, 在自然生态系统中研究较少, 且未考虑环境因子如何影响生态系统功能及其与生物多样性的关系。本研究选取亚热带广泛分布的次生林为研究对象, 利用模型拟合的方法, 探讨亚热带次生林中物种丰富度与生物量和生产力之间的关系, 以及环境因子(海拔、坡度、坡向、土层厚度)和次生林恢复时间(林龄)对生物量、生产力、物种丰富度与生物量和生产力间关系的影响。结果表明, 当不考虑环境因子时, 物种丰富度与生物量之间存在显著的线性正相关关系, 而与生产力之间存在显著的二次关系(先增加后减少的驼峰型)。当考虑环境因子时, 个体密度和土层厚度对生物量具有显著影响, 而环境因子对生产力并无显著效应。在坡度较陡、坡向朝南及土层较厚的环境条件下, 物种丰富度与生物量具有显著的线性正相关关系; 而在坡度较缓、坡向朝北及土层较薄的环境条件下, 物种丰富度不影响生物量。在较高海拔环境条件下, 生产力随物种丰富度先增加后减少(驼峰形状), 而在其他环境条件下, 生产力均不响应物种丰富度。以上结果说明自然森林生态系统中物种丰富度与生物量和生产力的关系存在差异, 且其相互间的关系依赖于环境因子。  相似文献   

18.
Temperate forests have recently been identified as being continuing sinks for carbon even in their mature and senescent stages. However, modeling exercises indicate that a warmer and drier climate as predicted for parts of Central Europe may substantially alter the source/sink function of these economically important ecosystems. In a transect study with 14 mature European beech (Fagus sylvatica L.) forests growing on uniform geological substrate, we analyzed the influence of a large reduction of annual precipitation (970–520 mm yr?1) on the carbon stocks in fast and slow pools, independent of the well‐known aging effect. We investigated the C storage in the organic L, F, H layers, the mineral soil to 100 cm, and in the biomass (stem, leaves, fine roots), and analyzed the dependence of these pools on precipitation. Soil organic carbon decreased by about 25% from stands with > 900 mm yr?1 to those with < 600 mm yr?1; while the carbon storage in beech stems slightly increased. Reduced precipitation affected the biomass C pool in particular in the fine root fraction but much less in the leaf biomass and stem fractions. Fine root turnover increased with a precipitation reduction, even though stand fine root biomass and SOC in the organic L, F, and H layers decreased. According to regression analyses, the C storage in the organic layers was mainly controlled by the size of the fine root C pool suggesting an important role of fine root turnover for the C transfer from tree biomass to the SOC pool. We conclude that the long‐term consequence of a substantial precipitation decrease would be a reduction of the mineral soil and organic layer SOC pools, mainly due to higher decomposition rates. This could turn temperate beech forests into significant carbon sources instead of sinks under global warming.  相似文献   

19.
自然条件变化和人类活动不仅加剧了土壤酸化,扩大了酸性土壤面积,而且严重影响了土壤氮循环。氨氧化过程作为硝化作用的限速步骤,是全球氮循环的核心环节,受到国内外研究者的广泛关注。探究酸性土壤氨氧化作用及其功能微生物对完善氮循环机制和促进土壤养分循环具有重要意义。本文主要综述了土壤中氨氧化代谢途径,对比了氨氧化细菌(ammoniaoxidizing bacteria, AOB)、氨氧化古菌(ammonia-oxidizing archaea, AOA)和全程硝化菌(complete ammoniaoxidizers,Comammox)对酸性土壤氨氧化作用的相对贡献,分析了微生物内源功能差异及pH、底物浓度等外部环境因素对氨氧化微生物丰度、活性和群落结构的影响,最后对氨氧化微生物研究进行了展望,以期为酸性土壤氨氧化作用研究和微生物修复技术应用与实践提供科学参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号