首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to study the responses of dominant species to different land uses in the semiarid temperate grassland of Inner Mongolia, we tested the physiological responses of Stipa grandis, Leymus chinensis, and Artemisia frigida to mowing, grazing exclusion, and grazing land uses at the leaf and ecosystem levels. The grazing-exclusion and mowing sites released CO2, but the grazing site was a net carbon sink. L. chinensis and S. grandis contributed more to the ecosystem CO2 exchange than A. frigida. At the grazing-exclusion and mowing sites, Leymus chinensis and Stipa grandis both exhibited a higher light-saturation point and higher maximum photosynthetic rate than that at the grazing site, which increased photosynthesis and growth compared to those at the grazing site. In contrast, A. frigida possessed a higher nitrogen content than the other species, and more of the light energy used for photosynthesis, particularly at the grazing site.  相似文献   

2.
This study aimed to investigate the impact of long-term grassland management on the temporal dynamic of SOC density in two temperate grasslands. The top soil SOC density, soil total nitrogen density and soil bulk density (0–20 cm) under long-term fencing and grazing treatments, the aboveground net primary productivity of fenced plots and the associated climatic factors of Leymus chinensis and Stipa grandis grasslands in Inner Mongolia were collected from literatures and analyzed. The results showed that the SOC density increased linearly with fenced duration but was insensitive to grazed duration in both grasslands. Compared with long-term grazing, fenced plots had larger potential for carbon sequestration, and the accumulation rate of SOC density was 29 and 35 g Cm–2y–1 for L. chinensis and S. grandis grasslands. Fenced duration and mean annual temperature jointly contributed large effect on temporal pattern of SOC density. Climate change and grazed duration had little influence on the inter-annual variance of SOC density in grazed plots. Our results confirmed the enhancement effect of long-term fencing on soil carbon sequestration in degraded temperate grassland, and long-term permanent plot observation is essential and effective for accurately and comprehensively understanding the temporal dynamic of SOC storage.  相似文献   

3.
Shan D  Zhao M L  Han B  Han G D 《农业工程》2006,26(10):3175-3182
The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures were observed. Plant samples were collected from a series of grazing gradients of the Stipa grandis steppe in Dalinuoer National Nature Reserve in the Inner Mongolia (located at 116°38′–116°41′E and 43°25′–43°27′N.), which has the following vegetation types in abundance: Leymus chinensis is the constructive species; the dominant species include Stipa grandis, Cleistogenes squarrosa, and Artemisia frigida; the companion species is Potentilla acaulis and others. According to the grazing pressure, the following four grazing gradients were identified from the dwellings of the herdsmen to the enclosure site: (1) no grazing (CK enclosure site); (2) light grazing (LG); (3) moderate grazing (MG); (4) heavy grazing (HG). Young leaves of each Stipa grandis were collected during the growing season. The results showed that the Stipa grandis showed abundant genetic diversity despite the fact that certain polymorphic loci were lost; at the same time, new polymorphic loci emerged when grazing pressure increased; a total of 10 primers were used, and 74 bands were produced in total, of which 65 bands were polymorphic; the total percentage of polymorphism was 89%; the percentage of polymorphic loci of the Stipa grandis population decreased with the increase of grazing pressure; the percentage of polymorphic loci was 62.2% in the no-grazing (CK) population, 64.9% in the light-grazing (LG) population, 58.1% in the moderate-grazing (MG) population, and 56.8% in the heavy-grazing (HG) population; the genetic diversity of the population in the descending order using the Shannon's information index is as follows: (1) light grazing (0.3486); (2) no grazing (0.3339); (3) moderate grazing (0.3249); (4) heavy grazing (0.2735) with the same distributional pattern as the Nei's genetic diversity index. The test showed the following: As the grazing pressures increased, the change of genetic diversity decreased; the genetic differentiation coefficient among the population (Gst) was 0.1984, which showed the presence of small partial genetic diversity (19.8%) among populations; gene flow (Nm*) between primers varied from 0.9806 to 3.4463, and the mean gene flow (Nm*) was 2.0202; the UPGMA cluster figure that was constructed on the basis of the genetic distance matrix showed four populations that became genetically closer at each step: (1) The first group was the moderate-grazing (MG) population and the heavy- grazing (HG) population; (2) The second group consisted of the no-grazing (CK) population and the light-grazing (LG) population; (3) The two groups gathered together.  相似文献   

4.
The effects of grazing intensity on selected soil characteristics in the feather-grass steppes of the autonomous region of Ningxia (northern China) were investigated by a comparison of non-grazed areas (grazing intensity 0), slightly grazed areas (grazing intensity I), moderately grazed areas (II), intensively grazed areas (III) and over-grazed areas (IV). Even in areas used only minimally for grazing activities (I), a serious increase (doubling) in soil hardness was apparent in the upper soil layer. A continual decrease in organic matter in the surface soil can be correlated directly to soil compaction. The content of organic matter in soil of degree IV amounts to only a third of the organic matter found in non-grazed areas. This decrease can be attributed partly to the poor living conditions for soil organisms in compacted soils, but also to a significant reduction in litter. This is because intensive grazing causes reduced vegetation cover leading to litter being blown away by wind or washed away by heavy rainfall. Thus in level III hardly any plant litter remained to be incorporated into the soil as humus. Likewise root density also suffered its largest decrease in areas with a grazing intensity level III. With regard to the content of nitrogen and phosphorous (total and available) hardly any difference between soils of grazing intensity 0 and I was observed, whereas a noticeable decrease was apparent between levels I and II. Available Potassium was similar for all grazing levels. The pH-value of the soil solution is not significantly affected by grazing. We did not observe differences in the soils of the two main types of steppe vegetation (Stipa grandis and Stipa bungeana steppe) in response to grazing. Only the amount of litter in the S. grandis-steppe in non-grazed or slightly grazed areas is noticeably higher than in the S. bungeana steppe.  相似文献   

5.
Information on carbon (C) dynamics and allocation in plant–soil system is essential for understanding the terrestrial C cycle. Using a 13C pulse-labeling chamber (1 m × 1 m) technique, we carried out three separate experiments in an Inner Mongolia temperate steppe (Leymus chinensisStipa grandisCleistogenes squarrosa). The first experiment determined mainly the temporal variation of δ13C (‰) signatures over the chase period of 6–27 July in a fenced site. The second experiment compared the dynamics and allocation of recently assimilated C over 10–20 August between a fenced site and a grazed site. The third experiment measured the effect of N application on assimilated C fluxes over 26 August–4 September in a fenced site. The above- and below-ground partitionings of labeled 13C were found to vary with site, growth stage and management state. The labeled 13C in shoots was maximal during the first day after labeling and then declined, whereas it roughly increased in roots. There was the absence of significant variation in soil δ13C. In the fenced site, the labeled 13C partitioning to the shoots accounted for 24.4, 16.8 and 11.1% of initial additions by 10 days after the labelings on 6 July, 10 August and 26 August 2003, respectively. However, the percentage of recently assimilated C partitioning to the roots, about 22–23%, was almost unchanged throughout growing stages. In the grazed site, the labeled 13C of about 50% was respired, 13% was remained in the shoots, and 37% was translated to the roots; the corresponding percentages, for the fenced site with N, were approximately 60, 20 and 18%, respectively. This study suggests that carbon was rapidly and substantially cycled in the Inner Mongolia temperate steppe by means of photosynthesis and respirations. It appears that the grazing and the N application had significant effects on the dynamics and allocation of recently photo-assimilated C in the plant–soil system.  相似文献   

6.
Inner Mongolia steppe grasslands are widely used for livestock farming and the regrowth ability of grassland species is therefore strongly influenced not only by water and nutrient availability but also quite heavily by grazing. However, little is known on how grazing, water and nitrogen interactively affect the dominant C3 species (Leymus chinensis, Stipa grandis, Agropyron cristatum) and the C4 species (Cleistogenes squarrosa). Therefore in the 2007 and 2008 growing seasons, a field experiment was carried out to test the hypothesis that under different grazing intensities the dominant species show different short-term regrowth response to simultaneous variation in the availability of water and nitrogen. Single factor and interaction effects of the addition of water (rainfed vs. simulated wet-year) and nitrogen (0 or 25 kg N ha?1) were analysed along a gradient of four grazing intensities (ungrazed, lightly, moderately and heavily grazed) after one month of grazing exclusion. Water and nitrogen addition affected short-term regrowth of all species in a similar way whereas species responded differently to grazing. Simulated wet-year water availability consistently resulted in higher standing biomass, relative growth rate and cellulase digestible organic matter yield. Supplementary nitrogen promoted standing biomass and crude protein concentration. The nutritive value of all species’ standing biomass showed a similar increase with more intensive grazing. However, heavy grazing led to a clear shift in the relative biomass of the species, i.e. mainly a promotion of the C4 grass, C. squarrosa. In contrast to our hypothesis, there were no differences among species in their response to water or nitrogen addition, whereas, heavy grazing induced the expected species-specific response. Our results suggest that heavy grazing rather than nitrogen or water determine short-term shifts in species composition of the investigated steppe ecosystem. Furthermore, differences in the species-specific growth response to grazing may increase the proportion of the C4 grass C. squarrosa in steppe communities, whereas higher availability of nitrogen and water may lead to higher forage biomass and nutritive value of all investigated species but in short-term cannot compensate for the grazing induced changes in species composition.  相似文献   

7.
Long-term monitoring of soil properties reveals site-specific ecosystem shifts in soil processes due to land use and climate changes. This paper aims to study the effects of physical landscape changes associated with grazing on soil thermal and moisture regime at the plot scale in a semiarid Leymus chinensis steppe of Inner Mongolia, China. The investigated sites were subjected to three grazing intensities: ungrazed since 1979 (UG79), moderately grazed only in winter time (WG), and heavily grazed (HG). At each plot, we recorded the soil moisture and temperature over a 6-year period that spanned between June 2004 and September 2009 and experienced a large range in precipitation (162 to 362 mm). Based on these monitoring data, we divided a year into four hydric periods: (1) growing period (late April to August); (2) transitional period from summer to winter (September?COctober); (3) winter time (November?Cfirst March); and (4) transitional period from winter to summer (March?CApril). In general, soil moisture in grazed sites was lower than in the ungrazed site, particularly for the 30?C50 cm soil layer. Seasonal fluctuation of the soil moisture, due to variable precipitation and atmospheric demands, was most significant in the topsoil (0?C10 cm) and was less pronounced in deeper soil. Regardless of hydric seasons, soil moisture was significantly influenced by grazing intensity, whereas soil temperature was slightly influenced. With increasing grazing intensity, soil water storage decreased remarkably. Consequently, grazing reduced plant available water and therefore grassland productivity, which are linked to a great extent with the trampling-induced soil structure change and soil moisture regime.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) have a significant influence on plant productivity and diversity in non-grazing grassland. However, the interactive effects between grazing intensity and AMF on plant community composition in natural grassland communities are not well known. We conducted a field experiment that manipulated AMF colonization and grazing intensity to study the impact of AMF suppression on plant community composition and nutrient status over 2 years (2015–2016) with contrasting rainfall levels. We found that AMF root colonization was significantly reduced by the application of the fungicide benomyl as a soil drench. Grazing intensity regulated plant community composition and aboveground biomass mainly by reducing the growth of Leymus chinensis over 2 years. AMF suppression increased the growth of Chenopodium glaucum, but it did not alter other plant species across all grazing intensities. The effects of AMF suppression on plant community composition changed along a grazing gradient considerably between years: AMF suppression increased the biomass of C. glaucum across all grazing intensities in 2015, but slightly increased it in 2016. Interactions between AMF suppression and grazing intensity altered the phosphorus concentration of Stipa grandis and Cleistogenes squarrosa in 2015 but not in 2016. AMF suppression decreased the shoot phosphorus content of L. chinensis but increased that of C. glaucum across all grazing intensities. Our results indicate that grazing intensity substantially alters aboveground community biomass and affects growth of dominant species; AMF by itself have limited effects on plant communities along a grazing gradient in typical steppe.  相似文献   

9.
10.
张峰  杨阳  乔荠瑢  贾丽欣  赵天启  赵萌莉 《生态学报》2019,39(20):7649-7655
为探讨放牧下大针茅草原建群种大针茅(Stipa grandis)和优势种羊草(Leymus chinensis)及糙隐子草(Cleistogenes squarrosa)种群空间分布特点及关系,本实验以内蒙古自治区锡林郭勒盟毛登牧场大针茅草原建群种大针茅、优势种羊草和糙隐子草为研究对象,通过野外试验,以地统计学为基础,采用半方差函数、分形维数及克里格插值法,分析了围封(CK)和放牧(G)样地大针茅、羊草及糙隐子草种群小尺度空间分布关系。结果表明:围封样地大针茅、羊草及糙隐子草植株密度分别为10.94株/m~(2 )、12.95株/m~(2 )、13.60株/m~(2 ),放牧样地植株密度分别为16.84株/m~(2 )、48.28株/m~(2 )、28.63株/m~(2 ),放牧显著增加大针茅、羊草及糙隐子草种群密度(P0.05);半方差函数进行模型拟合发现,大针茅、羊草及糙隐子草种群空间分布函数关系均符合高斯模型;通过对空间分布函数关系分析,围封和放牧样地结构比为G (93.3%) CK(60.4%),表明放牧样地大针茅种群空间分布主要受结构性因素影响,而围封大针茅种群则受随机性因素影响较大;围封和放牧样地分形维数值为CK(1.796) G(1.361),表明放牧样地大针茅、羊草和糙隐子草所形成的空间分布格局相比围封样地较为复杂,大针茅空间分布对羊草和糙隐子草空间分布的依赖性较弱;通过立体图分析,在放牧利用过程中,羊草处于中低密度时,及糙隐子草处于高密度时,均与大针茅种群间的关系从围封中的竞争关系变为放牧过程中的亲和关系,可见放牧导致种间关系改变。  相似文献   

11.
Question: What is the impact of grazing regime on plant species abundance, plant growth form, plant productivity and plant nutrient concentrations in a forest steppe? Location: Hustai National Park in the forest steppe region of Mongolia. Methods: On the Stipa steppe we applied three different grazing regimes by using; (1) one type of exclosure which excluded grazing by large mammalian herbivores, mainly takh (Przewalski horse), (2) another type of exclosure that excluded both large and small (Siberian marmots) mammalian herbivores, and (3) control plots which were freely grazed. We measured species frequencies, tiller densities, plant biomass and nitrogen concentrations of the vegetation. Results: Exclusion from grazing by takh and marmots significantly increased plant standing crop, but marmot grazing and full grazing did not show significant differences. Protection from grazing decreased forage quality, shown by a lower N-concentration of the standing crop. However, this was solely the result of the lower live-dead ratio of the vegetation. The frequency of the rhizomatous Leymus chinensis decreased under reduced grazing, as did the frequency of the total of rhizomatous species. The frequency of Stipa krylovii increased under reduced grazing, as did its basal areas, tiller density and tussock height. Conclusion: Reduced grazing leads to a lower abundance of rhizomatous species and an increase in tussock species.  相似文献   

12.
Water is the most important factor controlling plant growth, primary production, and ecosystem stability in arid and semi-arid grasslands. Here we conducted a 2-year field study to explore the contribution of winter half-year (i.e. October through April) and summer precipitation (May through September) to the growth of coexisting plant species in typical steppe ecosystems of Inner Mongolia, China. Hydrogen stable isotope ratios of soil water and stem water of dominant plant species, soil moisture, and plant water potential were measured at three steppe communities dominated by Stipa grandis, Caragana microphylla, and Leymus chinensis, respectively. The fraction of water from winter half-year precipitation was an important water source, contributing 45% to plant total water uptake in a dry summer after a wet winter period (2005) and 15% in a summer where subsoil moisture had been exploited in the previous year (2006). At species level, Caragana microphylla exhibited a complete access to deep soil water, which is recharged by winter precipitation, while Cleistogenes squarrosa completely depended on summer rains. Leymus chinensis, Agropyron cristatum, and Stipa grandis showed a resource-dependent water use strategy, utilizing deep soil water when it was well available and shifting to rain water when subsoil water had been exploited. Our findings indicate that differentiation of water sources among plants improves use of available soil water and lessens the interspecific competition for water in these semi-arid ecosystems. The niche complementarity in water sources among coexisting species is likely to be the potential mechanism for high diversity communities with both high productivity and high resilience to droughts.  相似文献   

13.
In the present study, we aim to analyze the effect of grazing, precipitation and temperature on plant species dynamics in the typical steppe of Inner Mongolia, P.R. China. By uncoupling biotic and abiotic factors, we provide essential information on the main drivers determining species composition and species diversity. Effects of grazing by sheep were studied in a controlled experiment along a gradient of seven grazing intensities (from ungrazed to very heavily grazed) during six consecutive years (2005–2010). The results show that plant species composition and diversity varied among years but were little affected by grazing intensity, since the experimental years were much dryer than the long term average, the abiotic constraints may have overridden any grazing effect. Among-year differences were predominantly determined by the abiotic factors of precipitation and temperature. Most of the variation in species dynamics and coexistence between C3 and C4 species was explained by seasonal weather conditions, i.e. precipitation and temperature regime during the early-season (March-June) were most important in determining vegetation dynamics. The dominant C3 species Stipa grandis was highly competitive in March-June, when the temperature levels were low and rainfall level was high. In contrast, the most common C4 species Cleistogenes squarrosa benefited from high early-season temperature levels and low early-season rainfall. However, biomass of Stipa grandis was positively correlated with temperature in March, when effective mean temperature ranges from 0 to 5°C and thus promotes vernalization and vegetative sprouting. Our results suggest that, over a six-year term, it is temporal variability in precipitation and temperature rather than grazing that determines vegetation dynamics and species co-existence of grazed steppe ecosystems. Furthermore, our data support that the variability in the biomass of dominant species, rather than diversity, determine ecosystem functioning. The present study provides fundamental knowledge on the complex interaction of grazing – vegetation – climate.  相似文献   

14.
Overgrazing‐induced degradation of temperate semiarid steppes may affect the soil sink for atmospheric methane (CH4). However, previous studies have primarily focused on the growing season and on single grazing patterns. Thus, the response of annual CH4 uptake by steppes compared with various grazing practices is uncertain. In this study, we investigated the effects of grazing on the annual CH4 uptake by two typical Eurasian semiarid steppes (the Stipa grandis steppe and the Leymus chinensis steppe) located in Inner Mongolia, China. The CH4 fluxes were measured year‐round using static chambers and gas chromatography at 12 field sites that differed primarily in grazing intensities. Our results indicated that steppe soils were CH4 sinks throughout the year. The annual CH4 uptake correlated with stocking rates, whereas the seasonality of CH4 uptake was primarily dominated by temperature. The annual CH4 uptake at all sites averaged 3.7±0.7 kg C ha?1 yr?1 (range: 2.3–4.5), where approximately 35% (range: 23–40%) occurred during the nongrowing season. Light‐to‐moderate grazing (stocking rate≤1 sheep ha?1 yr?1) did not significantly change the annual CH4 uptake compared with ungrazed steppes, but heavy grazing reduced annual CH4 uptake significantly (by 24–31%, P<0.05). These findings imply that easing the pressure of heavily grazed steppes (e.g. moving to light or moderate stocking rates) would help restore steppe soil sinks for atmospheric CH4. The empirical equations based on the significant relationships between annual CH4 uptake and stocking rates, aboveground plant biomass and topsoil air permeability (P<0.01) could provide simple approaches for the estimation of regional CH4 uptake by temperate semiarid steppes.  相似文献   

15.
To clarify the response of soil organic carbon (SOC) content to season-long grazing in the semiarid typical steppes of Inner Mongolia, we examined the aboveground biomass and SOC in both grazing (G-site) and no grazing (NG-site) sites in two typical steppes dominated by Leymus chinensis and Stipa grandis, as well as one seriously degraded L. chinensis grassland dominated by Artemisia frigida. The NG-sites had been fenced for 20 years in L. chinensis and S. grandis grasslands and for 10 years in A. frigida grassland. Aboveground biomass at G-sites was 21–35% of that at NG-sites in L. chinensis and S. grandis grasslands. The SOC, however, showed no significant difference between G-site and NG-site in both grasslands. In the NG-sites, aboveground biomass was significantly lower in A. frigida grassland than in the other two grasslands. The SOC in A. frigida grassland was about 70% of that in L. chinensis grassland. In A. frigida grassland, aboveground biomass in the G-site was 68–82% of that in the NG-site, whereas SOC was significantly lower in the G-site than in the NG-site. Grazing elevated the surface soil pH in L. chinensis and A. frigida communities. A spatial heterogeneity in SOC and pH in the topsoil was not detected the G-site within the minimal sampling distance of 10 m. The results suggested that compensatory growth may account for the relative stability of SOC in G-sites in typical steppes. The SOC was sensitive to heavy grazing and difficult to recover after a significant decline caused by overgrazing in semiarid steppes.  相似文献   

16.
Species composition and photosynthetic characteristics of dominant species of ungrazed plot (UG), overgrazed plot (OG), and restored grazed plot (RG) were determined in the Xilin River Basin, Inner Mongolia, China. Both heavily grazing and restoration significantly affected the composition of different species and life forms. Leymus chinensis, Stipa grandis, and Cleistogenes polyphylla, three dominant perennial grasses in UG plot, contributed 58.9 % aboveground biomass to that of whole community, and showed higher net photosynthetic rate (P N), transpiration rate (E), and intrinsic water-use efficiency (WUE). In OG plot, relative biomass of L. chinensis and S. grandis significantly decreased, while relative biomass of three shrubs/sub-shrubs, Caragana microphylla, Artemisia frigida, and Kochia prostrata, obviously increased. Heavy grazing significantly decreased P N, E, and WUE of L. chinensis and S. grandis, while shrubs/sub-shrubs showed significantly higher photosynthetic activity and WUE than the grasses. After 18-year restoration, photosynthetic activities of L. chinensis and S. grandis were significantly higher than those in the OG plot. The proportion of L. chinensis, S. grandis, and C. microphylla significantly increased, and relative biomass of C. polyphylla, A. frigida, and K. prostrata markedly declined in RG plot. We found close relationships between physiological properties of species and their competitive advantage in different land use types. Higher photosynthetic capability means more contribution to total biomass. The variations in physiological characteristics of plants could partly explain the changes in species composition during degrading and restoring processes of Inner Mongolia typical steppes.  相似文献   

17.

Aims

To study the relationship between changes in soil properties and plant community characters produced by grazing in a meadow steppe grassland and the composition and diversity of spore-producing arbuscular mycorrhizal fungi (AMF).

Methods

A field survey was carried out in a meadow steppe area with a gradient of grazing pressures (a site with four grazing intensities and a reserve closed to grazing). The AMF community composition (characterized by spore abundance) and diversity, the vegetation characters and soil properties were measured, and root colonization by AMF was assessed.

Results

AMF diversity (richness and evenness) was higher under light to moderate grazing pressure and declined under intense grazing pressures. Results of multiple regressions indicated that soil electrical conductivity was highly associated with AMF diversity. The variation in AMF diversity was partially associated to the density of tillers of the dominant grass (Leymus chinensis), the above and below-ground biomass and the richness of the plant community.

Conclusions

We propose that the relationship between plants and AMF is altered by environmental stress (salinity) which is in turn influenced by animal grazing. Direct and indirect interactions between vegetation, soil properties, and AMF community need to be elucidated to improve our ability to manage these communities.  相似文献   

18.
通过比较实验导出用于研究草原群落中不同植物种群起始吸水层研究方法,暂称之为"土体挖空法"。该方法是将土壤剖面的下部挖空,保留上面0—5、0—10、0—15 cm的土层和上面的全部植物,当从地表浇的水在被挖空部分的向下表面开始渗出时测定哪些植物种群吸收了水分。实验中用于检验植物是否吸水的方法是用水势仪测定法。在内蒙古锡林郭勒盟白音锡勒牧场中国科学院草原生态系统定位研究站的实验样地上,通过对处于不同退化恢复演替阶段的草原群落中主要植物种群的研究得出以下结论:1)同一群落中不同植物种间根系起始吸水层存在差异,在恢复群落中存在根系起始吸水位置的生态位分离和重叠现象,其中黄囊苔草(Carex korshinskyi)、冷蒿(Artemisia frigida)、糙隐子草(Cleistogenes squarrosa)的起始吸水层位置表明它们在对土壤中水资源利用空间维上存在空间生态位重叠现象;羊草(Leymus chinensis)、大针茅(Stipa grandis)、米氏冰草(Agropyron michnoi)之间也存在类似的生态位重叠;两组植物种群间存在对土壤中水资源利用空间维上的空间生态位分离现象。2)无论是否退化的草原群落,其中黄囊苔草、冷蒿、糙隐子草的根系起始吸水层深度保持不变;在严重退化的群落中羊草、大针茅、米氏冰草同种个体的起始吸水层则变浅,即呈浅层化分布现象。退化群落中,植物体小型化和根系浅层化的同时植物根系对水分吸收的起始位置总体呈浅层化。3)典型草原群落中各植物种群间存在较大幅度的生态位重叠和一定的生态位分离,其中生态位分离的幅度较小,重叠的程度较大。  相似文献   

19.
Grazing removal is widely used in grassland management. Plant responses following grazing removal at different organizational levels, however, are not well understood. We examined plant responses at different stocking rates in an Inner Mongolia grassland ecosystem dominated by Leymus chinensis and Stipa grandis. Our results indicated that plant response patterns differed significantly among stocking rates, at different levels of organization, and between wet and dry years. Community aboveground net primary production (ANPP) recovered more quickly at low and moderate stocking rates than those at high stocking rates. Response of aboveground net primary production (RANPP) was significantly positively correlated with both individual biomass and density responses of L. chinensis. Overcompensation of L. chinensis after grazing removal contributed greatly to positive RANPP at the community level. Significant compensatory effects were found between the two dominant species and between dominant species and the remaining non-dominant species. Variation in precipitation significantly affected community ANPP, relationships between community and species responses, and compensatory effects between species. Our study suggests that periodic grazing removal is likely to be a useful method for grassland management and that a combination of species with compensatory effects can be advantageous for reseeding practices in grassland restoration.  相似文献   

20.
After the collapse of the Soviet Union in 1991, 12 million ha of cropland were abandoned in the steppe zone of Kazakhstan. At the same time livestock numbers crashed, leaving large areas of steppe without any grazing. We aimed to investigate, to which degree spontaneous succession on former cropland leads to the restoration of native steppe vegetation, and how this process is influenced by changing grazing patterns. We recorded biomass and vegetation characteristics as well as local soil and landscape variables in 151 quadrats of 100 m2, covering 89 plots on former cropland abandoned in the early 1990s and 62 reference plots of near-natural steppe grassland that was never ploughed. About half of the plots of each category were located in a remote region where grazing has been absent for ca. 20 years, whereas the other half was located in a region with moderate livestock grazing. While there were no differences in the diversity, structure and plant life form composition of currently grazed and un-grazed near-natural steppe grasslands, corresponding successional plots on abandoned arable land exhibited significant differences. Grazed plots on former fields showed higher species richness and a higher cover of dwarf shrubs (mostly Artemisia spec.), ruderals and perennial herbs. At the same time, immigration of typical steppe species was much more successful. Contrary, in the absence of any grazing we found species-poor swards dominated by Stipa lessingiana and Leymus ramosus exhibiting an increasing frequency of wildfires due to litter accumulation. After 15–20 years, secondary steppe grasslands still differed substantially from their near-natural references. Our results suggest that grazing is mandatory to fully restore the original near-natural steppe vegetation and the underlying processes of pyric herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号