首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

2.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg-1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, -AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg-1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg-1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

3.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg?1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, ?AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg?1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg?1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

4.
The critical value of soil Olsen-P is the point above which the probability of crop yield response to fertilizer P is small or nil. Determining this critical value is fundamental when making appropriate P fertilizer recommendations. In this study, the critical values were determined for continuous maize (Zea mays L.)-winter wheat (Triticum aestivum L.) cropping systems from a 15-year field experiment across three sites in China using linear-linear, linear-plateau and Mitscherlich models. The mean critical values for maize using the three models ranged from 12.1 to 17.3 mg P kg?1 (average 15.3 mg P kg?1) and for winter wheat from 12.5 to 19.0 mg P kg?1 (average 16.3 mg P kg?1) among study sites. The mean critical value for maize was approximately 7% lower than that for winter wheat across all sites based on the three models. Critical values identified by the Mitscherlich model were 1.4 to 2.1 times those from linear-linear and 1.3 to 1.9 times of those from linear-plateau and were crop and site dependent. There was a significant negative correlation (P?<?0.05) between the mean critical value from the three models and the observed P uptake by either maize or wheat. Our study shows that the critical values can vary with sites, crops and models used, and thus caution should be taken when selecting the most appropriate one when making P fertilizer recommendations for agronomic return and to minimize chances of negative environment impact from overfertilization.  相似文献   

5.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

6.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. Results of a long-term (32 years) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)- wheat (Triticum aestivum L.) rotation was analyzed to determine the effects of mineral fertilizer and farmyard manure (FYM) application at 10 Mg?ha-1 on SOC stocks and depth distribution of the labile and recalcitrant pools of SOC. Results indicate all treatments increased SOC contents over the control. The annual application of NPK significantly (P?<?0.05) enhanced total SOC, oxidizable soil organic C and its fractions over the control plots. The increase in these SOC fractions was greater with the NPK + FYM treatment. Nearly 16% (mean of all treatments) of the estimated added C was stabilized into SOC both in the labile and recalcitrant pools, preferentially in the 0?C30 cm soil layer. However, the labile:recalcitrant SOC ratios of applied C stabilized was largest in the 15?C30 cm soil layer. About 62% of total SOC was present in the labile pool. Plots under the N + FYM and NPK + FYM treatments contained a larger proportion of total SOC in the recalcitrant pool than the plots with mineral or no fertilizer, indicating that FYM application promoted SOC stabilization.  相似文献   

7.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

8.
Biochar is an organic amendment used for soil remediation, there are only a few studies documenting the effects of nitrogen on the role of biochar in contaminated soils. A pot experiment was conducted to investigate the impacts of biochar (0%, 1%, and 2.5%, w/w) and nitrogen (0, 100, and 200 mg N kg?1) on plant growth, nutrient and cadmium (Cd) uptake of Cichorium intybus. N, P, Ca, Mg, and Cd concentrations increased with N level in 0% and 1% biochar treatments. In plants treated with 2.5% biochar, 200 mg N kg?1 addition caused significant reductions of N, P, Ca, Mg, and Cd concentrations in comparison to 100 mg N kg?1 treatments. Nitrogen promoted shoot biomass at all biochar treatments, while biochar had no effect on shoot biomass in 0 and 200 mg N kg?1 addition treatments. Nitrogen also significantly increased N, P, K, Ca, Mg, and Cd contents in the 0% and 1.5% biochar addition treatments. Although soil DTPA-extractable Cd concentration showed the lowest values in 1% biochar in combination with 100 and 200 mg N kg?1 addition treatments, lowest shoot Cd concentration, and relatively high shoot biomass occurred in the 2.5% biochar + 200 mg N kg?1 treatment. Based on these results, biochar application at its highest rate (2.5%) in combination with high N supply (200 mg N kg?1) contributed to both crop yield and agricultural product safety. N input alone might increase the risk of human health, and the optimum N dose should be determined during phytostabilization process.  相似文献   

9.
Enhancing soil organic carbon (SOC) sequestration and food supply are vital for human survival when facing climate change. Site-specific best management practices (BMPs) are being promoted for adoption globally as solutions. However, how SOC and crop yield are related to each other in responding to BMPs remains unknown. Here, path analysis based on meta-analysis and machine learning was conducted to identify the effects and potential mechanisms of how the relationship between SOC and crop yield responds to site-specific BMPs in China. The results showed that BMPs could significantly enhance SOC and maintain or increase crop yield. The maximum benefits in SOC (30.6%) and crop yield (79.8%) occurred in mineral fertilizer combined with organic inputs (MOF). Specifically, the optimal SOC and crop yield would be achieved when the areas were arid, soil pH was ≥7.3, initial SOC content was ≤10 g kg−1, duration was >10 years, and the nitrogen (N) input level was 100–200 kg ha−1. Further analysis revealed that the original SOC level and crop yield change showed an inverted V-shaped structure. The association between the changes in SOC and crop yield might be linked to the positive role of the nutrient-mediated effect. The results generally suggested that improving the SOC can strongly support better crop performance. Limitations in increasing crop yield still exist due to low original SOC level, and in regions where the excessive N inputs, inappropriate tillage or organic input is inadequate and could be diminished by optimizing BMPs in harmony with site-specific conditions.  相似文献   

10.
Crop residue-derived dissolved organic matter (DOM) plays an important role in soil carbon (C) cycling. To investigate the effects of maize residue-derived DOM and urea additions on the native soil organic carbon (SOC) decomposition and soil net C balance a pot experiment was carried out during the winter wheat growing season in the North China Plain (NCP). The results showed that adding maize residue-derived DOM alone (RDOM) or together with urea (RDOM?+?N) accelerated the decomposition of native SOC and resulted in a net SOC loss. The net loss of SOC was 3.90?±?0.61 and 3.53?±?0.48?g?C?m?2 in RDOM and RDOM?+?N treatments, respectively. The stimulatory effect of per unit DOM-C addition on the native SOC decomposition was 0.25?±?0.05 and 0.45?±?0.07 for the RDOM and RDOM?+?N treatments, respectively. Increases in the microbial biomass and the activity of β-glucosidase, invertase and cellobiohydrolase as well as soil mineral N content were responsible for a more intense priming effect in DOM-amended soils. The positive relationship between primed soil C and soil available N (R?=?0.76, P?<?0.05) suggested that the stimulation of decomposition of native SOC by DOM addition would be enhanced by nitrogen fertilizer application.  相似文献   

11.

Background and aims

Much attention has focused on the effects of tropospheric ozone (O3) on terrestrial ecosystems and plant growth. Since O3 pollution is currently an issue in China and many parts of the world, understanding the effects of elevated O3 on soil carbon (C) and nitrogen (N) sequestration is essential for efforts to predict C and N cycles in terrestrial ecosystems under predicted increases in O3. Thus the main objective of this study was to determine whether an increases in atmospheric O3 concentration influenced soil organic C (SOC) and N sequestration.

Methods

A free-air O3 enrichment (O3-FACE) experiment was started in 2007 and used continuous O3 exposure from March to November each year during crop growth stage in a rice (Oryza sativa L.)—wheat (Triticum aestivum L.) rotation field in the Jiangsu Province, China. We investigated differences in SOC and N and soil aggregate composition in both elevated and ambient O3 conditions.

Results

Elevated atmospheric O3 (18–80 nmol mol?1 or 50 % above the ambient) decreased the SOC and N concentration in the 0–20 cm soil layer after 5 years. Elevated O3 significantly decreased the SOC concentration by 17 % and 5.6 % in the 0–3 cm and the 10–20 cm layers, respectively. Elevated O3 significantly decreased the N concentration by 8.2–27.8 % in three layers at the 20 cm depth. In addition, elevated O3 influenced the formation and transformation of soil aggregates and the distribution of SOC and N in the aggregates across soil layer classes. Elevated O3 significantly decreased the macro-sized aggregate fraction (16.8 %) and associated C and N (0.5 g kg?1 and 0.32 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (61 %) and associated C (1.7 g kg?1) in the 0–3 cm layer. Elevated O3 significantly decreased the macro-sized aggregate fraction (9.6 %) and associated C and N (1.4 g kg?1 and 0.35 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (41.8 %) and decreased the corresponding associated N (0.14 g kg?1) in the 3–10 cm layer. Elevated O3 did not significantly effect the formation and transformation of aggregates in the 10–20 cm layer, yet it did significantly increase the C concentration in the macro-sized fraction (1 g kg?1) and decrease the N concentration in the macro- and micro-sized fractions (0.24 g kg?1 and 0.16 g kg?1, respectively).

Conclusion

Long-term exposure to elevated atmospheric O3 negatively affected the physical structure of the soil and impaired soil C and N sequestration.  相似文献   

12.
The need to promote fertiliser use by African smallholder farmers to counteract the current decline in per capita food production is widely recognised. But soil heterogeneity results in variable responses of crops to fertilisers within single farms. We used existing databases on maize production under farmer (F-M) and researcher management (R-M) to analyse the effect of soil heterogeneity on the different components of nutrient use efficiency by maize growing on smallholder farms in western Kenya: nutrient availability, capture and conversion efficiencies and crop biomass partitioning. Subsequently, we used the simple model QUEFTS to calculate nutrient recovery efficiencies from the R-M plots and to calculate attainable yields with and without fertilisers based on measured soil properties across heterogeneous farms. The yield gap of maize between F-M and R-M varied from 0.5 to 3 t grain ha?1 season?1 across field types and localities. Poor fields under R-M yielded better than F-M, even without fertilisers. Such differences, of up to 1.1 t ha?1 greater yields under R-M conditions are attributable to improved agronomic management and germplasm. The relative response of maize to N–P–K fertilisers tended to decrease with increasing soil quality (soil C and extractable P), from a maximum of 4.4-fold to ?0.5-fold relative to the control. Soil heterogeneity affected resource use efficiencies mainly through effects on the efficiency of resource capture. Apparent recovery efficiencies varied between 0 and 70% for N, 0 and 15% for P, and 0 to 52% for K. Resource conversion efficiencies were less variable across fields and localities, with average values of 97 kg DM kg?1 N, 558 kg DM kg?1 P and 111 kg DM kg?1 K taken up. Using measured soil chemical properties QUEFTS over-estimated observed yields under F-M, indicating that variable crop performance within and across farms cannot be ascribed solely to soil nutrient availability. For the R-M plots QUEFTS predicted positive crop responses to application of 30 kg P ha?1 and 30 kg P ha?1 + 90 kg N ha?1 for a wide range of soil qualities, indicating that there is room to improve current crop productivity through fertiliser use. To ensure their efficient use in sub-Saharan Africa mineral fertilisers should be: (1) targeted to specific niches of soil fertility within heterogeneous farms; and (2) go hand-in-hand with the implementation of agronomic measures to improve their capture and utilisation.  相似文献   

13.
The objective of this study was to determine the effects of plant growth regulator (PGR) (no PGR, trinexapac-ethyl, and paclobutrazol) and N fertilizer (zero N, an average of 37 kg N ha?1 month?1, 6 and 12 kg N ha?1 week?1) on soil organic C (SOC) and soil N in creeping bentgrass (Agrostis stolonifera L.) fairway turf. After 4 years of field experiments soil samples were obtained from soil depths of 0–2.5, 2.5–5, 5–7.5, 7.5–10, 10–15, 15–20, and 20–30 cm. Soil bulk density, SOC, total N, NO 3 ? –N, and NH 4 + –N concentrations were determined. Paclobutrazol and trinexapac-ethyl application increased SOC. The 37 kg N ha?1 month?1 application increased SOC at the 0–2.5 cm depth with both PGRs. When paclobutrazol was used, N fertilizer always increased SOC; however, the greatest increase was observed with the 12 kg N ha?1 week?1 application when compared to other rates, inversely related to the NH 4 + –N concentration. Nitrogen application increased soil total N and NO 3 ? –N in the upper three depths. The application of PGRs and N fertilizer to creeping bentgrass fairway turf is an effective strategy for promoting C sequestration.  相似文献   

14.

Background and aims

Rhizosphere effect is controlled by spatial distribution of rhizodeposits, which may be influenced by soil aggregation and soil moisture regime in relation to water uptake by roots. The objectives of this study were to measure soil organic carbon (SOC) concentration and its δ13C abundance by aggregate size in the rooted bulk soil and by distance in the root-free soil vertically and horizontally away from roots, and to measure DOC concentration and its δ13C abundance in pore water in the rooted bulk soil after a seasonal pulse labelings of 13CO2 to maize (Zea mays L.).

Methods

Pulse labeling was conducted in the field once a week for 11 weeks. Soil cells (50 mm in diameter and 100 mm long) mimicking root-free soils were imbedded vertically and horizontally 25–50 mm away from the main root of a maize crop. The rooted bulk soils were sampled to extract soil pore water at different suctions and to fractionate aggregates by wet sieving. The root-free soil cells were sliced by 1 mm intervals from the root end to 20 mm away. All the sampling was 12 days after the last labeling after the crop was harvested.

Results and discussion

The δ13C abundance before and after the continuous labeling was ?24.20?±?0.05?‰ and ?23.80?±?0.05?‰ in the rooted bulk soil. The labeling caused increases in δ13C abundance in all the aggregates in the rooted bulk soil and down to 14 mm away from the roots in both the root-free cells. The δ13C abundance was enriched in the >2 mm and 1–2 mm aggregates (?23.17?±?0.12?‰ and ?23.26?±?0.05?‰) though the SOC concentration was not different among the >0.25 mm aggregates, indicating that rhizodeposits or their metabolites were protected and distributed widely in whole soil through soil aggregation. The δ13C abundance in pore water (?24.0?±?0.01?‰) was much lower than those soil aggregates and greatest from the >2 μm soil pores though the DOC concentration was greater from the <20 μm soil pores. The δ13C abundance was in general greater in the horizontal cell than in the vertical cell. The δ13C abundance decreased with the increasing distance to the roots in the vertical cell and peaked at the 5 and 6 mm distance to the roots in the horizontal cell (?23.66?±?0.11?‰ and ?23.5?±?0.10?‰), possibly due to the drier condition unfavorable to microbial decomposition in the horizontal cell. The higher δ13C abundance in the horizontal cell than in the vertical cell was accompanied by a lower SOC concentration and a lower C: N ratio within 3 mm away from the roots, suggesting a stronger priming effect due to the longer residence time of rhizodeposits in the horizontal cell than in the vertical cell.

Conclusions

Rhizodeposits or their metabolites were protected during soil aggregation and distributed to 14 mm beyond the rhizosphere in the natural soil-plant system. This extension is of significance in regulating the formation of soil structure and the priming of soil organic matter during the whole life cycle of plants, which needs further study.  相似文献   

15.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline.  相似文献   

16.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

17.
This study was aimed at developing a protocol for improving soil health using Sargassum johnstonii as a conditioner and fertilizer. Tomato (Lycopersicon esculentum) plants were raised on seaweed-amended soil in experimental fields of Department of Botany, University of Delhi, India. Soil was amended with granular (G) and powder (P) seaweed forms in the proportion of 12.5 % (G1 and P1), 25 % (G2 and P2), and 37.5 % (G3 and P3) (w/w). To compare the efficacy of seaweed fertilizer with a conventional organic fertilizer, a parallel series (positive control) was run with vermicompost (V) in the above-mentioned proportions. Unamended soil served as control (C). The nutrient status of S. johnstonii and vermicompost was analyzed prior to giving treatments. Physicochemical properties of the amended soils as well as growth, productivity, and biochemical constituents of tomato grown in soil with each treatment were analyzed. Higher concentration of granular form of seaweed (G3) in the soil resulted in 144, 268, 122, 138, and 188 % increase in Na, K, Mg, Ca, and Zn, respectively. Seaweed-amended soil had higher porosity and water-holding capacity as compared to C. Tomato plants raised on seaweed (G3 and P3)-amended soil showed an increased overall growth, with earlier flowering and fruiting as compared to control plants. Plants raised on G3-amended soil showed significantly higher levels of proteins (95 mg?g?1 FW) in leaves, and vitamin C (99.2 mg 100 g?1) and lycopene (5.78 mg 100 g?1) in fruits. The present study showed that S. johnstonii biomass has a high potential to condition and fertilize the soil for improved crop productivity.  相似文献   

18.
A pot experiment with acid yellow–brown soil was conducted to investigate the interactive effects of molybdenum (Mo) and phosphorus (P) fertilizers on the photosynthetic characteristics of seedlings and grain yield of Brassica napus which is sensitive to soil P and Mo deficiency. Both Mo and P fertilizers were applied at three levels (0 mg Mo kg?1, 0.15 mg Mo kg?1, 0.30 mg Mo kg?1 soil; 0 mg P kg?1, 80 mg P kg?1, 160 mg P kg?1 soil). The results showed that P fertilizer application increased grain yield, soluble sugar concentrations of seedling leaves, DM and P accumulation of seedling shoots of Brassica napus in the absence or presence of Mo fertilizer. In contrast, Mo fertilizer increased these parameters only in the presence of P fertilizer. Mo accumulation in shoots, chlorophyll concentrations and net photosynthesis rate (P n) of seedling leaves were increased by both Mo and P fertilizers, particularly with the combination of the two fertilizers. The results also showed that the Mo and P fertilizers increased photosynthetic rate through two different mechanisms, with Mo increasing photosynthetic activity of mesophyll cells, and P increasing stomatal conductance. The results demonstrate that there was a synergetic effect on photosynthesis and grain yield between Mo and P fertilizers and it is conducive for Brassica napus growth to co-apply the two fertilizers.  相似文献   

19.
Responses of soil organic carbon (SOC) cycling and C budget in forest ecosystems to elevated nitrogen (N) deposition are divergent. Little is known about the N critical loads for the shift between gain and loss of SOC storage in the old-growth temperate forest of Northeast China. The objective of this study was to investigate the nonlinear responses of SOC concentration and composition to multiple rates of N addition, as well as the microbial mechanisms responsible for SOC alteration under N enrichment. Nine rates of urea addition (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha?1 year?1) with 4 replicates for each treatment were conducted. Soil samples in the 0–10 cm mineral layer were taken after 3 years of N fertilization. Soil aggregate size distribution and SOC physical fractionation were performed to examine SOC dynamics. Phospholipid fatty acid (PLFA) technique was used to measure the abundance and structure of microbial community. Three years of N addition led to significant increases in the concentrations of soil particulate organic C and aggregate-associated organic C fractions only. The responses of total N and each labile SOC fraction to the rates of N addition followed Gaussian equations, with the N critical loads being estimated to be between 80 and 100 kg N ha?1 year?1. The change in SOC concentration (ΔSOC) was positively correlated with the changes in aggregate associated OC (r2 > 0.80) and POC concentrations (r2 > 0.50). Significant correlations among the concentrations of labile SOC fractions, the percentages of soil aggregates, and the abundances of microbial PLFAs were observed, which implies a close linkage between microbial community structure and SOC accumulation and stability. Our results suggest that increase in soil moisture and shift of microbial community structure could control the critical N load for the switch between C accumulation and loss. The current N deposition rate (~ 11 kg N ha?1 year?1) to the northeast China’s forests is favorable for soil C accumulation over the short term.  相似文献   

20.
Xiaoyuan Yan  Wei Gong 《Plant and Soil》2010,331(1-2):471-480
Fertilization practice in the North China Plain has been changing since the late 1970s. To evaluate how organic and chemical fertilizers contribute to yield, yield variability and soil carbon sequestration, we analyzed wheat (Triticum aestivum L.) yield data in a long-term fertilization experiment that began in 1989, conducted pot experiments using soils from the long-term fertilization experiment plots, and simulated the soil organic carbon (SOC) dynamics of individual treatments in the long-term experiments. Wheat yield results showed that when organic fertilizer was used as an alternative nutrient source for chemical fertilizers, it was neither directly beneficial to crop yield, nor decreased yield variability when compared to a balanced chemical fertilizer. However, there was a linear relationship between yield trend and SOC change rate (r = 0.951, P?<?0.01). The use of organic fertilizer increased SOC and soil fertility and consequently resulted in a larger yield trend when compared to a balanced chemical fertilizer. Roth-C model simulation and pot experimental results indicated that soils with higher SOC had a higher root/shoot ratio. Therefore, the long-term use of organic fertilizer not only directly increases SOC, but indirectly contributes to carbon sequestration by favoring root development. We found that yield variability was determined by the relative contributions of soil fertility and fertilizer to yield (the contribution of fertilizer to yield is the yield difference between fertilized and unfertilized treatments). The contribution of balanced chemical fertilizer to yield was higher than that of organic fertilizer, resulting in less yield variability in balanced chemical fertilizer treatment. However, if organic fertilizer was used as a complementary nutrient source with chemical fertilizers, it would increase the contribution of fertilizers to yield, thus decreasing yield variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号