首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phe(1395) stacks parallel to the FAD isoalloxazine ring in neuronal nitric-oxide synthase (nNOS) and is representative of conserved aromatic amino acids found in structurally related flavoproteins. This laboratory previously showed that Phe(1395) was required to obtain the electron transfer properties and calmodulin (CaM) response normally observed in wild-type nNOS. Here we characterized the F1395S mutant of the nNOS flavoprotein domain (nNOSr) regarding its physical properties, NADP(+) binding characteristics, flavin reduction kinetics, steady-state and pre-steady-state cytochrome c reduction kinetics, and ability to shield its FMN cofactor in response to CaM or NADP(H) binding. F1395S nNOSr bound NADP(+) with 65% more of the nicotinamide ring in a productive conformation with FAD for hydride transfer and had an 8-fold slower rate of NADP(+) dissociation. CaM stimulated the rates of NADPH-dependent flavin reduction in wild-type nNOSr but not in the F1395S mutant, which had flavin reduction kinetics similar to those of CaM-free wild-type nNOSr. CaM-free F1395S nNOSr lacked repression of cytochrome c reductase activity that is typically observed in nNOSr. The combined results from pre-steady-state and EPR experiments revealed that this was associated with a lesser degree of FMN shielding in the NADP(+)-bound state as compared with wild type. We conclude that Phe(1395) regulates nNOSr catalysis in two ways. It facilitates NADP(+) release to prevent this step from being rate-limiting, and it enables NADP(H) to properly regulate a conformational equilibrium involving the FMN subdomain that controls reactivity of the FMN cofactor in electron transfer.  相似文献   

2.
Nitric-oxide synthase (NOS) is composed of a C-terminal, flavin-containing reductase domain and an N-terminal, heme-containing oxidase domain. The reductase domain, similar to NADPH-cytochrome P450 reductase, can be further divided into two different flavin-containing domains: (a) the N terminus, FMN-containing portion, and (b) the C terminus FAD- and NADPH-binding portion. The crystal structure of the FAD/NADPH-containing domain of rat neuronal nitric-oxide synthase, complexed with NADP(+), has been determined at 1.9 A resolution. The protein is fully capable of reducing ferricyanide, using NADPH as the electron donor. The overall polypeptide fold of the domain is very similar to that of the corresponding module of NADPH-cytochrome P450 oxidoreductase (CYPOR) and consists of three structural subdomains (from N to C termini): (a) the connecting domain, (b) the FAD-binding domain, and (c) the NADPH-binding domain. A comparison of the structure of the neuronal NOS FAD/NADPH domain and CYPOR reveals the strict conservation of the flavin-binding site, including the tightly bound water molecules, the mode of NADP(+) binding, and the aromatic residue that lies at the re-face of the flavin ring, strongly suggesting that the hydride transfer mechanisms in the two enzymes are very similar. In contrast, the putative FMN domain-binding surface of the NOS protein is less positively charged than that of its CYPOR counterpart, indicating a different nature of interactions between the two flavin domains and a different mode of regulation in electron transfer between the two flavins involving the autoinhibitory element and the C-terminal 33 residues, both of which are absent in CYPOR.  相似文献   

3.
The objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps. The neutral (blue) semiquinone form, as an intermediate in the air-oxidation, was unstable in the presence of O(2). The purified FAD/NADPH domain prepared under our experimental conditions was activated by NADP(+) but not NAD(+). These results indicate that this domain exists in two states; an active state and a resting state, and the enzyme in the resting state can be activated by NADP(+). For the FAD/FMN domain, the reduction of the FAD-FMN pair of the oxidized enzyme with NADPH proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The formation of semiquinones from the FAD-FMN pair was greatly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form, FAD-FMNH(.), was further rapidly reduced by NADPH with an increase at 520 nm, which is a characteristic peak of the FAD semiquinone. Results presented here indicate that intramolecular one-electron transfer from FAD to FMN is activated by the binding of Ca(2+)/CaM.  相似文献   

4.
Numerous mutations/polymorphisms of the POR gene, encoding NADPH:cytochrome P450 oxidoreductase (CYPOR), have been described in patients with Antley-Bixler syndrome (ABS), presenting with craniofacial dysmorphogenesis, and/or disordered steroidogenesis, exhibiting ambiguous genitalia. CYPOR is the obligate electron donor to 51 microsomal cytochromes P450 that catalyze critical steroidogenic and xenobiotic reactions, and to two heme oxygenase isoforms, among other redox partners. To address the molecular basis of CYPOR dysfunction in ABS patients, the soluble catalytic domain of human CYPOR was bacterially expressed. WT enzyme was green, due to air-stable FMN semiquinone (blue) and oxidized FAD (yellow). The ABS mutant V492E was blue-gray. Flavin analysis indicated that WT had a protein:FAD:FMN ratio of approximately 1:1:1, whereas approximately 1:0.1:0.9 was observed for V492E, which retained 9% of the WT k(cat)/K(m) in NADPH:cytochrome c reductase assays. V492E was reconstituted upon addition of FAD, post-purification, as shown by flavin analysis, activity assay, and near UV-visible CD. Both Y459H and V492E were expressed as membrane anchor-containing proteins, which also exhibited FAD deficiency. CYP4A4-catalyzed omega-hydroxylation of prostaglandin E1 was supported by WT CYPOR but not by either of the ABS mutants. Hydroxylation activity was rescued for both Y459H and V492E upon addition of FAD to the reaction. Based on these findings, decreased FAD-binding affinity is proposed as the basis of the observed loss of CYPOR function in the Y459H and V492E POR mutations in ABS.  相似文献   

5.
6.
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS.  相似文献   

7.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

8.
Okai M  Kudo N  Lee WC  Kamo M  Nagata K  Tanokura M 《Biochemistry》2006,45(16):5103-5110
4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.  相似文献   

9.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

10.
NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.NADPH-cytochrome P450 oxidoreductase (CYPOR)4 is a ∼78-kDa, multidomain, microsomal diflavin protein that shuttles electrons from NADPH → FAD → FMN to members of the ubiquitous cytochrome P450 superfamily (1, 2). In humans, the cytochromes P450 (cyt P450) are one of the most important families of proteins involved in the biosynthesis and degradation of a vast number of endogenous compounds and the detoxification and biodegradation of most foreign compounds. CYPOR also donates electrons to heme oxygenase (3), cytochrome b5 (4), and cytochrome c (5).The FAD receives a hydride anion from the obligate two electron donor NADPH and passes the electrons one at a time to FMN. The FMN then donates electrons to the redox partners of CYPOR, again one electron at a time. Cyt P450 accepts electrons at two different steps in its complex reaction cycle. Ferric cyt P450 is reduced to the ferrous protein, and oxyferrous cyt P450 receives the second of the two electrons to form the peroxo (Fe+3OO)2- cyt P450 intermediate (6). In vivo, CYPOR cycles between the one- and three-electron reduced forms (7, 8). Although the one-electron reduced form is an air-stable, neutral blue semiquinone (FMNox/sq, -110 mV), it is the FMN hydroquinone (FMNsq/hq, -270 mV), not the semiquinone, that donates an electron to its redox partners (811). CYPOR is the prototype of the mammalian diflavin-containing enzyme family, which includes nitric-oxide synthase (12), methionine synthase reductase (13, 14), and a novel reductase expressed in the cytoplasm of certain cancer cells (15). CYPOR is also a target for anticancer therapy, because it reductively activates anticancer prodrugs (16).CYPOR consists of an N-terminal single α-helical transmembrane anchor (∼6 kDa) responsible for its localization to the endoplasmic reticulum and the soluble cytosolic portion (∼66 kDa) capable of reducing cytochrome c. Crystal structures of the soluble form of the wild-type and several mutant CYPORs are available (17, 18). The first ∼170 amino acids of the soluble domain are highly homologous to flavodoxin and bind FMN (FMN domain), whereas the C-terminal portion of the soluble protein consists of a FAD- and NADPH-binding domain with sequence and structural similarity to ferredoxin-NADP+ oxidoreductase (FAD domain). A connecting domain, possessing a unique sequence and structure, joins the FMN and FAD domains and is partly responsible for the relative orientation of the FMN and FAD domains. In the crystal structure, a convex anionic surface surrounds FMN. In the wild-type crystal structure, the two flavin isoalloxazine rings are in van der Waals contact, poised for efficient interflavin electron transfer (17). Based on the juxtaposition of the two flavins, an extrinsic electron transfer rate of ∼1010 s-1 is predicted (19). However, the experimentally observed electron transfer rate between the two flavins is 30–55 s-1 (20, 21). This modest rate and slowing of electron transfer in a viscous solvent (75% glycerol) suggest that interflavin electron transfer is likely conformationally gated. Moreover, the “closed” crystal structure, in which the flavins are in contact, is difficult to reconcile with mutagenesis studies that indicate the acidic amino acid residues on the surface near FMN are involved in interacting with cyt P450 (22). The first structural insight into how cyt P450 might interact with the FMN domain of CYPOR was provided by the crystal structure of a complex between the heme and FMN-containing domains of cyt P450 BM3 (23). In this complex, the methyl groups of FMN are oriented toward the heme on the proximal surface of cyt P450 BM3. Considered together, these three observations, the slow interflavin electron transfer, the mutagenesis data, and the structure of the complex between the heme and FMN domains of cyt P450 BM3, suggest that CYPOR will undergo a large conformational rearrangement in the course of shuttling electrons from NADPH to cyt P450. In addition, crystal structures of various CYPOR variants indicate that the FMN domain is highly mobile with respect to the rest of the molecule (18).Consideration of how the reductase would undergo a reorientation to interact with its redox partners led us to hypothesize the existence of a structural element in the reductase that would regulate the conformational changes and the relative dynamic motion of the domains. Our attention focused on the hinge region between the FMN and the connecting domain, because it is often disordered and highly flexible in the crystal structure (supplemental Fig. S1). The length and sequence of the hinge have been altered by site-directed mutagenesis, and the effects of the mutations on the catalytic properties of each mutant have been determined. The results demonstrate that lengthening the linker or altering its sequence do not modify the properties of CYPOR. In contrast, deletion of four amino acids markedly disrupts electron transfer from FAD to FMN, whereas the ability of the FMN domain to donate electrons to cyt P450 remains intact. The hinge deletion variant has been crystallized in three “open” conformations capable of interacting with cyt P450.  相似文献   

11.
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.  相似文献   

12.
In this study, we have analyzed interflavin electron transfer reactions from FAD to FMN in both the full-length inducible nitric oxide synthase (iNOS) and its reductase domain. Comparison is made with the interflavin electron transfer in NADPH-cytochrome P450 reductase (CPR). For the analysis of interflavin electron transfer and the flavin intermediates observed during catalysis we have used menadione (MD), which can accept an electron from both the FAD and FMN sites of the enzyme. A characteristic absorption peak at 630 and 520 nm can identify each FAD and FMN semiquinone species, which is derived from CPR and iNOS, respectively. The charge transfer complexes of FAD with NADP+ or NADPH were monitored at 750 nm. In the presence of MD, the air-stable neutral (blue) semiquinone form (FAD-FMNH*) was observed as a major intermediate during the catalytic cycle in both the iNOS reductase domain and full-length enzyme, and its formation occurred without any lag phase indicating rapid interflavin electron transfer following the reduction of FAD by NADPH. These data also strongly suggest that the low level reactivity of a neutral (blue) FMN semiquinone radical with electron acceptors enables one-electron transfer in the catalytic cycle of both the FAD-FMN pairs in CPR and iNOS. On the basis of these data, we propose a common model for the catalytic cycle of both CaM-bound iNOS reductase domain and CPR.  相似文献   

13.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

14.
Genetic variations in POR, encoding NADPH-cytochrome P450 oxidoreductase (CYPOR), can diminish the function of numerous cytochromes P450, and also have the potential to block degradation of heme by heme oxygenase-1 (HO-1). Purified full-length human CYPOR, HO-1, and biliverdin reductase were reconstituted in lipid vesicles and assayed for NADPH-dependent conversion of heme to bilirubin. Naturally-occurring human CYPOR variants queried were: WT, A115V, Y181D, P228L, M263V, A287P, R457H, Y459H, and V492E. All CYPOR variants exhibited decreased bilirubin production relative to WT, with a lower apparent affinity of the CYPOR–HO-1 complex than WT. Addition of FMN or FAD partially restored the activities of Y181D, Y459H, and V492E. When mixed with WT CYPOR, only the Y181D CYPOR variant inhibited heme degradation by sequestering HO-1, whereas Y459H and V492E were unable to inhibit HO-1 activity suggesting that CYPOR variants might have differential binding affinities with redox partners. Titrating the CYPOR–HO-1 complex revealed that the optimal CYPOR:HO-1 ratio for activity was 1:2, lending evidence in support of productive HO-1 oligomerization, with higher ratios of CYPOR:HO-1 showing decreased activity. In conclusion, human POR mutations, shown to impact P450 activities, also result in varying degrees of diminished HO-1 activity, which may further complicate CYPOR deficiency.  相似文献   

15.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

16.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

17.
Human novel reductase 1 (NR1) is an NADPH dependent diflavin oxidoreductase related to cytochrome P450 reductase (CPR). The FAD/NADPH- and FMN-binding domains of NR1 have been expressed and purified and their redox properties studied by stopped-flow and steady-state kinetic methods, and by potentiometry. The midpoint reduction potentials of the oxidized/semiquinone (-315 +/- 5 mV) and semiquinone/dihydroquinone (-365 +/- 15 mV) couples of the FAD/NADPH domain are similar to those for the FAD/NADPH domain of human CPR, but the rate of hydride transfer from NADPH to the FAD/NADPH domain of NR1 is approximately 200-fold slower. Hydride transfer is rate-limiting in steady-state reactions of the FAD/NADPH domain with artificial redox acceptors. Stopped-flow studies indicate that hydride transfer from the FAD/NADPH domain of NR1 to NADP+ is faster than hydride transfer in the physiological direction (NADPH to FAD), consistent with the measured reduction potentials of the FAD couples [midpoint potential for FAD redox couples is -340 mV, cf-320 mV for NAD(P)H]. The midpoint reduction potentials for the flavin couples in the FMN domain are -146 +/- 5 mV (oxidized/semiquinone) and -305 +/- 5 mV (semiquinone/dihydroquinone). The FMN oxidized/semiquinone couple indicates stabilization of the FMN semiquinone, consistent with (a) a need to transfer electrons from the FAD/NADPH domain to the FMN domain, and (b) the thermodynamic properties of the FMN domain in CPR and nitric oxide synthase. Despite overall structural resemblance of NR1 and CPR, our studies reveal thermodynamic similarities but major kinetic differences in the electron transfer reactions catalysed by the flavin-binding domains.  相似文献   

18.
The alkanesulfonate monooxygenase system from Escherichia coli is involved in scavenging sulfur from alkanesulfonates under sulfur starvation. An FMN reductase (SsuE) catalyzes the reduction of FMN by NADPH, and the reduced flavin is transferred to the monooxygenase (SsuD). Rapid reaction kinetic analyses were performed to define the microscopic steps involved in SsuE catalyzed flavin reduction. Results from single-wavelength analyses at 450 and 550 nm showed that reduction of FMN occurs in three distinct phases. Following a possible rapid equilibrium binding of FMN and NADPH to SsuE (MC-1) that occurs before the first detectable step, an initial fast phase (241 s(-1)) corresponds to the interaction of NADPH with FMN (CT-1). The second phase is a slow conversion (11 s(-1)) to form a charge-transfer complex of reduced FMNH(2) with NADP(+) (CT-2), and represents electron transfer from the pyridine nucleotide to the flavin. The third step (19 s(-1)) is the decay of the charge-transfer complex to SsuE with bound products (MC-2) or product release from the CT-2 complex. Results from isotope studies with [(4R)-(2)H]NADPH demonstrates a rate-limiting step in electron transfer from NADPH to FMN, and may imply a partial rate-limiting step from CT-2 to MC-2 or the direct release of products from CT-2. While the utilization of flavin as a substrate by the alkanesulfonate monooxygenase system is novel, the mechanism for flavin reduction follows an analogous reaction path as standard flavoproteins.  相似文献   

19.
Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies.  相似文献   

20.
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: PORnull, PORwt, PORYH, and PORVE, for which equivalent CYP1A2 and CYPOR levels were confirmed, except for PORnull, not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in PORYH and PORVE models than in PORwt, indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号