首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

2.
Cow manure with bedding is renewable organic biomass available around the year on dairy farms. Developing efficient and cost-effective psychrophilic dry anaerobic digestion (PDAD) processes could contribute to solving farm-related environmental, energy, and manure management problems in cold-climate regions. This study was to increase the organic loading rate (OLR), fed to a novel psychrophilic (20 °C) dry anaerobic digestion of 27 % total solid dairy manure (cow feces and wheat straw) in sequence batch reactor (PDAD-SBR), by 133 to 160 %. The PDAD-SBR process operated at treatment cycle length of 21 days and OLR of 7.0 and 8.0 g total chemical oxygen demand (TCOD)?kg?1 inoculum day?1 (5.2?±?0.1 and 5.8?±?0.0 g volatile solids (VS)?kg?1 inoculum day?1) for four successive cycles (84 days) produced average specific methane yields (SMYs) of 147.1?±?17.2 and 143.2?±?11.7 normalized liters (NL)?CH4?kg?1 VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.45 at OLR of 8.0 g TCOD kg?1 inoculum day?1. Hydrolysis was the limiting step reaction. The VS removal averaged around 57.4?±?0.5 and 60.5?±?5.7 % at OLR 7.0 and 8.0 g TCOD kg?1 inoculum day?1, respectively.  相似文献   

3.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

4.
The global proliferation of dams is one of the most significant anthropogenic impacts on the environment, resulting in the trapping of massive loads of sediment and nutrients in impoundments. Few studies, however, have examined these impounded sediments to understand patterns of organic carbon (OC) accumulation and the effects of watershed processes on carbon delivery. This study measured total organic carbon (TOC) and stable isotopes of carbon and nitrogen (δ13C and δ15N) in Englebright Lake, CA to relate changes in OC sources and TOC accumulation to natural and anthropogenic events in the watershed and to depositional processes in the lake. Englebright Lake is a representative system for impoundments in small, mountainous rivers, and anthropogenic disturbances in the watershed caused high sediment accumulation rates in the lake. Throughout its 60-year history, 0.35 Tg OC has been trapped behind Englebright Dam and δ13C signatures indicate that more than 50% of the OC in Englebright Lake was derived from terrigenous sources. TOC content ranged from 0.03 to 30.24% of dry weight, and differed across depositional regimes; TOC content in topset deposits (0.35 ± 0.58%) was less than in foreset (2.64 ± 5.95%) and bottomset (1.51 ± 1.41%) deposits (p < 0.001) and TOC accumulation associated with flood events was higher (up to 231 kgOC m?2 year?1) than during non-event periods (0.2 to 39 kgOC m?2 year?1). TOC accumulation rates in Englebright Lake were up to an order of magnitude higher than previous estimates of OC burial in California impoundments. As the number and size of dams continues to expand worldwide, the storage of TOC in impoundments will likely add to the growing number of anthropogenic modifications to the global carbon cycle.  相似文献   

5.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

6.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

7.
Changes in bacterial CO2 fixation with depth in agricultural soils   总被引:1,自引:0,他引:1  
Soils were incubated continuously in an atmosphere of 14CO2 and the distribution of labeled C into soil organic carbon (14C-SOC) was determined at 0–1, 1–5, and 5–17 cm down the profile. Significant amounts of 14C-SOC were measured in paddy soils with a mean of 1,180.6?±?105.2 mg kg–1 at 0–1 cm and 135.3?±?47.1 mg kg?1 at 1–5 cm. This accounted for 5.9?±?0.7 % and 0.7?±?0.2 %, respectively, of the total soil organic carbon at these depths. In the upland soils, the mean 14C-SOC concentrations were 43 times (0–1 cm) and 11 times (1–5 cm) lower, respectively, than those in the paddy soils. The amounts of 14C incorporated into the microbial biomass (MBC) were also much lower in upland soils (5.0?±?3.6 % and 2.9?±?1.9 % at 0–1 and 1–5 cm, respectively) than in paddy soils (34.1?±?12.4 % and 10.2?±?2.1 % at 0–1 and 1–5 cm, respectively). Similarly, the amount of 14C incorporated into the dissolved organic carbon (DOC) was considerably higher in paddy soils (26.1?±?6.9 % and 6.9?±?1.3 % at 0–1 and 1–5 cm, respectively) than in upland soils (6.0?±?2.7 % and 4.3?±?2.2 %, respectively). The observation that the majority of the fixed 14C-SOC, RubisCO activity and cbbL gene abundance were concentrated at 0–1 cm depth and the fact that light is restricted to the top few millimeters of the soil profiles highlighted the importance of phototrophs in CO2 fixation in surface soils. Phylogenetic analysis of the cbbL genes showed that the potential for CO2 fixation was evident throughout the profile and distributed between both photoautotrophic and chemoautotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, Rubrivivax gelatinosus and Ralstonia eutropha.  相似文献   

8.
It is well known that land use change can affect soil C storage of terrestrial ecosystems either by altering the biotic processes involved in carbon cycling or by altering abiotic processes such as carbon adsorption on soil minerals. Relatively few studies, however, have examined the dynamics of soil C pools after conversion of farmland to forest or pasture. We selected three pairs of secondary forests and pastures that originated from the same abandoned sugarcane (interspecific hybrids of Saccharum spp.) land in the wet tropics of Hawaii to examine whether forest or pasture converted from farmland is more effective in sequestering C in soils. We compared the soil C pool, soil chemistry, and stable C isotope ratios between the forests and pastures. We found that total soil C was greater (P?<?0.01) in forests than in the pastures 22 years after land conversion. The percentages of SOC4 in the pastures were significantly higher than in the secondary forests in both soil layers. The percentages of SOC3 in the pastures were lower than in the secondary forests in both soil layers. The net SOC3 increase in the forest soils at 0–10 and 10–25 cm was 28.6?±?5.6 and 43.9?±?3.2 Mg ha?1 while net SOC4 increase in pasture soils at these respective depths was 18.8?±?2.2 and 26.1?±?2.7 Mg ha?1. We found that the net increases of SOC3 in both soil layers in the forest were greater (P?<?0.01) than the net increases of SOC4 in the respective soil layers in the pasture. Aluminum saturation was greater (P?<?0.01) in the forests than the pastures in both soil layers. There was no difference in oxalate extractable Fe concentration between the forests and the pastures but oxalate extractable Al concentration in both soil layers was greater (P?<?0.05) in forests than the pastures. Our findings indicated that reforestation of abandoned sugarcane farmland in Hawaii is more effective in soil C increase and stabilization than conversion to pasture.  相似文献   

9.
The dynamics of roots and soil organic carbon (SOC) in deeper soil layers are amongst the least well understood components of the global C cycle, but essential if soil C is to be managed effectively. This study utilized a unique set of land-use pairings of harvested tallgrass prairie grasslands (C4) and annual wheat croplands (C3) that were under continuous management for 75 years to investigate and compare the storage, turnover and allocation of SOC in the two systems to 1 m depth. Cropland soils contained 25 % less SOC than grassland soils (115  and 153 Mg C ha?1, respectively) to 1 m depth, and had lower SOC contents in all particle size fractions (2000–250, 250–53, 53–2 and <2 μm), which nominally correspond to SOC pools with different stability. Soil bulk δ13C values also indicated the significant turnover of grassland-derived SOC up to 80 cm depth in cropland soils in all fractions, including deeper (>40 cm) layers and mineral-associated (<53 μm) SOC. Grassland soils had significantly more visible root biomass C than cropland soils (3.2 and 0.6 Mg ha?1, respectively) and microbial biomass C (3.7 and 1.3 Mg ha?1, respectively) up to 1 m depth. The outcomes of this study demonstrated that: (i) SOC pools that are perceived to be stable, i.e. subsoil and mineral-associated SOC, are affected by land-use change; and, (ii) managed perennial grasslands contained larger SOC stocks and exhibited much larger C allocations to root and microbial pools than annual croplands throughout the soil profile.  相似文献   

10.

Background and aims

Much attention has focused on the effects of tropospheric ozone (O3) on terrestrial ecosystems and plant growth. Since O3 pollution is currently an issue in China and many parts of the world, understanding the effects of elevated O3 on soil carbon (C) and nitrogen (N) sequestration is essential for efforts to predict C and N cycles in terrestrial ecosystems under predicted increases in O3. Thus the main objective of this study was to determine whether an increases in atmospheric O3 concentration influenced soil organic C (SOC) and N sequestration.

Methods

A free-air O3 enrichment (O3-FACE) experiment was started in 2007 and used continuous O3 exposure from March to November each year during crop growth stage in a rice (Oryza sativa L.)—wheat (Triticum aestivum L.) rotation field in the Jiangsu Province, China. We investigated differences in SOC and N and soil aggregate composition in both elevated and ambient O3 conditions.

Results

Elevated atmospheric O3 (18–80 nmol mol?1 or 50 % above the ambient) decreased the SOC and N concentration in the 0–20 cm soil layer after 5 years. Elevated O3 significantly decreased the SOC concentration by 17 % and 5.6 % in the 0–3 cm and the 10–20 cm layers, respectively. Elevated O3 significantly decreased the N concentration by 8.2–27.8 % in three layers at the 20 cm depth. In addition, elevated O3 influenced the formation and transformation of soil aggregates and the distribution of SOC and N in the aggregates across soil layer classes. Elevated O3 significantly decreased the macro-sized aggregate fraction (16.8 %) and associated C and N (0.5 g kg?1 and 0.32 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (61 %) and associated C (1.7 g kg?1) in the 0–3 cm layer. Elevated O3 significantly decreased the macro-sized aggregate fraction (9.6 %) and associated C and N (1.4 g kg?1 and 0.35 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (41.8 %) and decreased the corresponding associated N (0.14 g kg?1) in the 3–10 cm layer. Elevated O3 did not significantly effect the formation and transformation of aggregates in the 10–20 cm layer, yet it did significantly increase the C concentration in the macro-sized fraction (1 g kg?1) and decrease the N concentration in the macro- and micro-sized fractions (0.24 g kg?1 and 0.16 g kg?1, respectively).

Conclusion

Long-term exposure to elevated atmospheric O3 negatively affected the physical structure of the soil and impaired soil C and N sequestration.  相似文献   

11.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

12.
The translocation of phosphorus (P) from terrestrial landscapes to aquatic bodies is of concern due to the impact of elevated P on aquatic system functioning and integrity. Due to their common location in depressions within landscapes, wetlands, including so-called geographically isolated wetlands (GIWs), receive and process entrained P. The ability of depressional wetlands, or GIWs, to sequester P may vary by wetland type or by land use modality. In this study we quantified three measures of P sorption capacities for two common GIW types (i.e., emergent marsh and forested wetlands) in two different land use modalities (i.e., agricultural and least impacted land uses) across 55 sites in Florida, USA. The equilibrium P concentration (EPC0) averaged 6.42 ± 5.18 mg P L?1 (standard deviation reported throughout); and ranged from 0.01–27.18 mg P L?1; there were no differences between GIW type or land use modality, nor interaction effects. Significant differences in phosphorus buffering capacity (PBC) were found between GIW types and land use, but no interaction effects. Forested GIWs [average 306.64 ± 229.63 (mg P kg?1) (µg P L?1)?1], and GIWs in agricultural settings [average 269.95 ± 236.87 (mg P kg?1) (µg P L?1)?1] had the highest PBC values. The maximum sorption capacity (Smax) was found to only differ by type, with forested wetlands (1274.5 ± 1315.7 mg P kg?1) having over three times the capacity of emergent GIWs (417.5 ± 534.6 mg P kg?1). Classification trees suggested GIW soil parameters of bulk density, organic content, and concentrations of total P, H2O-extractable P, and HCl-extractable P were important to classifying GIW P-sorption metrics. We conclude that GIWs have high potential to retain P, but that the entrained P may be remobilized to the wetland water column depending on storm and groundwater input P concentrations. The relative hydrologic dis-connectivity of GIWs from other aquatic systems may provide sufficient retention time to retain elevated P within these systems, thereby providing an ecosystem service to downstream waters.  相似文献   

13.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

14.
Intermittently submergence and drainage status of paddy fields can cause alterations in morphological and chemical characteristics of soils. We conducted a sequential fractionation study to provide an insight into solubility of Sulfur (S) and Molybdenum (Mo) in flooded alluvial paddy soils. The samples (0–15 and 15–30 cm) were taken from marine and riverine alluvial soils in Kedah and Kelantan areas, respectively, and were sequentially extracted with NaHCO3, NaOH, HCl, and HClO4–HNO3. Total S in upper and lower layers of Kedah and Kelantan ranged between 273 and 1121 mg kg?1, and 177 to 1509 mg kg?1, respectively. In upper layers and subsoil of Kedah, average total Mo were 0.34 and 0.27 mg kg?1, respectively. Average total Mo in Kelantan were 0.25 mg kg?1 (surface layer) and 0.28 mg kg?1 (subsoil). Cation exchange capacity (CEC) was positively correlated with plant available amounts of Mo in upper layers of Kedah area. Also, total and medium-term plant-available S was correlated with total carbon (C) at lower layers of Kelantan soil series. But in surface layers of Kelantan soil series, CEC was strongly correlated with total and medium-term plant-available S. Our results indicates that the influence of flooding conditions on soil S and Mo contents in paddy fields may cause long-term changes in S and Mo chemical reactivities.  相似文献   

15.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

16.
Recent identification of the widespread distribution of legacy sediments deposited in historic mill ponds has increased concern regarding their role in controlling land–water nutrient transfers in the mid-Atlantic region of the US. At Big Spring Run in Lancaster, Pennsylvania, legacy sediments now overlay a buried relict hydric soil (a former wetland soil). We compared C and N processing in legacy sediment to upland soils to identify soil zones that may be sources or sinks for N transported toward streams. We hypothesized that legacy sediments would have high nitrification rates (due to recent agricultural N inputs), while relict hydric soils buried beneath the legacy sediments would be N sinks revealed via negative net nitrification and/or positive denitrification (because the buried former wetland soils are C rich but low in O2). Potential net nitrification ranged from 9.2 to 77.9 g m?2 year?1 and potential C mineralization ranged from 223 to 1,737 g m?2 year?1, with the highest rates in surface soils for both legacy sediments and uplands. Potential denitrification ranged from 0.37 to 21.72 g m?2 year?1, with the buried relict hydric soils denitrifying an average of 6.2 g m?2 year?1. Contrary to our hypothesis, relict hydric layers did not have negative potential nitrification or high positive potential denitrification rates, in part because microbial activity was low relative to surface soils, as indicated by low nitrifier population activity, low substrate induced respiration, and low exoenzyme activity. Despite high soil C concentrations, buried relict hydric soils do not provide the ecological services expected from a wetland soil. Thus, legacy sediments may dampen N removal pathways in buried relict hydric soils, while also acting as substantial sources of NO3 ? to waterways.  相似文献   

17.
The aim of this study was to evaluate the daily variations in the thermoregulatory behavior of 4- to 6-week-old naked neck broilers (Label Rouge) in an equatorial semi-arid environment. A total of 220 birds were monitored for 5 days starting at 0600 hours and ending at 1800 hours. The period of observation was divided into classes of hours (C H). The observed behaviors were as follows: feed and water intake, wing-spreading, sitting or lying, and beak-opening. A total of 14,300 behavioral data values were registered. In C H 2 (0900 hours to 1100 hours) and 3 (1200 hours to 1500 hours), the greatest average body surface temperature was recorded (34.67?±?0.25 °C and 35.12?±?0.22 °C, respectively). The C H had an effect on the exhibition of all behaviors with the exception of the water intake behavior. Feed intake was more frequent in C H 1 (0600 hours to 0800 hours) and 4 (1600 hours to 1800 hours). In C H 2 and 3, the highest frequency of sitting or lying behavior was observed. Beak-opening and wing-spreading behaviors occurred more frequently in C H 3 where the body surface temperature (35.12?±?0.22 °C), radiant heat load (519.38?±?2.22 W m?2), and enthalpy (82.74?±?0.36 kJ kg?1 of dry air) reached maximum recorded averages. Thus, it can be concluded that naked neck broilers adjust their behavior in response to daily variations in the thermal environment. Wing-spreading and beak-opening behaviors are important adaptive responses to the thermal challenges posed by the equatorial semi-arid environment.  相似文献   

18.
The land crab Cardisoma guanhumi is one of the most common species in mangroves of the American Atlantic coast and Caribbean islands however, studies of its effects on the physical and chemical soil properties are scarce. This study compares specific physicochemical properties of soil between C. guanhumi burrows (B) and adjacent zones (AZ), and provides the first insights on their role as an ecosystem engineer in mangroves. The study was conducted in an estuarine system dominated by Rhizophora mangle, located at the Río Chico estuary, Miranda state of Venezuela. Random soil samples were taken digging each burrow until reaching the bottom and at the same depth for AZ. Data analysis was carried out using Bayesian inference. Credible mean differences between B and AZ, were found for sand (B?=?26.53?±?10.76, AZ?=?17.25?±?5.7%), silt (B?=?73.16?±?10.77, AZ?=?82.42?±?5.69%), pH (B?=?8.71?±?0.36, AZ?=?9.12?±?0.30), soil organic matter (SOM, B?=?0.43?±?0.21, AZ?=?0.17?±?0.06%), total N (TN, B?=?786?±?232, AZ?=?529?±?107 µg g?1), Mg (B?=?4.42?±?0.60, AZ?=?3.48?±?0.71 cmolc kg?1) and K (B?=?0.12?±?0.05 AZ?=?0.06?±?0.02 cmolc kg?1). Chemical variables as SOM, K, Mg and TN showed the highest values of effect size (>?1.4). With the exception of the pH, all chemicals variables—which were different between B and AZ—showed strong and decisive evidences of correlations with SOM. When SOM variable was controlled, the relationships between pH–TN, TN–K and Mg–K decreased, even though the correlation evidence between each pair remained. Differences in chemical contents found in B respect to AZ suggest that the activities of C. guanhumi (feeding, moulting, excretion and defecation) within their burrows promote the spatial heterogeneity of mangrove soils.  相似文献   

19.
Carbon sequestration in freshwater wetlands in Costa Rica and Botswana   总被引:1,自引:0,他引:1  
Tropical wetlands are typically productive ecosystems that can introduce large amounts of carbon into the soil. However, high temperatures and seasonal water availability can hinder the ability of wetland soils to sequester carbon efficiently. We determined the carbon sequestration rate of 12 wetland communities in four different tropical wetlands—an isolated depressional wetland in a rainforest, and a slow flowing rainforest swamp, a riverine flow-through wetland with a marked wet and dry season, a seasonal floodplain of an inland delta—with the intention of finding conditions that favor soil carbon accumulation in tropical wetlands. Triplicate soil cores were extracted in these communities and analyzed for total carbon content to determine the wetland soil carbon pool. We found that the humid tropic wetlands had greater carbon content (P ≤ 0.05) than the tropical dry ones (96.5 and 34.8 g C kg?1, respectively). While the dry tropic wetlands had similar sequestration rates (63 ± 10 g Cm?2 y?1 on average), the humid tropic ones differed significantly (P < 0.001), with high rates in a slow-flowing slough (306 ± 77 g Cm?2 y?1) and low rates in a tropical rain forest depressional wetland (84 ± 23 g Cm?2 y?1). The carbon accumulating in all of these wetlands was mostly organic (92–100%). These results suggest the importance of differentiating between types of wetland communities and their hydrology when estimating overall rates at which tropical wetlands sequester carbon, and the need to include tropical wetland carbon sequestration in global carbon budgets.  相似文献   

20.
The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L?1) and productivity (0.118 g L?1 day?1) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L?1 day?1. The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L?1 day?1. In series reactors, average CO2 uptake is 0.13 g L?1 day?1 per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号