首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.

Aims and methods

To evaluate the seasonal and spatial variations of methane (CH4) emissions and understand the controlling factors, we measured CH4 fluxes and their environmental variables for the first time by a static chamber technique in high Suaeda salsa marsh (HSM), middle S. salsa marsh (MSM), low S. salsa marsh (LSM) and bare flat (BF) in the northern Yellow River estuary throughout a year.

Results

CH4 emissions from coastal marsh varied throughout different times of the day and significant differences were observed in some sampling periods (p?<?0.05). Over all sampling periods, CH4 fluxes averaged between ?0.392 mgCH4 m?2?h?1 and 0.495 mgCH4 m?2?h?1, and emissions occurred during spring (0.008 mgCH4 m?2?h?1) and autumn (0.068 mgCH4 m?2?h?1) while sinks were observed during summer (?0.110 mgCH4 m?2?h?1) and winter (?0.009 mgCH4 m?2?h?1). CH4 fluxes from the four marshes were not significantly different (p?>?0.05), and emissions occurred in LSM (0.026 mgCH4 m?2?h?1) and BF (0.055 mgCH4 m?2?h?1) while sinks were observed in HSM (?0.035 mgCH4 m?2?h?1) and MSM (?0.022 mgCH4 m?2?h?1). The annual average CH4 flux from the intertidal zone was 0.002 mgCH4 m?2?h?1, indicating that coastal marsh acted as a weak CH4 source. Temporal variations of CH4 emission were related to the interactions of abiotic factors (temperatures, soil moisture and salinity) and the variations of limited C and mineral N in sediments, while spatial variations were mainly affected by the vegetation composition at spatial scale.

Conclusions

This study observed a large spatial variation of CH4 fluxes across the coastal marsh of the Yellow River estuary (CV?=?7856.25 %), suggesting that the need to increase the spatial replicates at fine scales before the regional CH4 budget was evaluated precisely. With increasing exogenous nitrogen loading to the Yellow River estuary, the magnitude of CH4 emission might be enhanced, which should also be paid more attentions as the annual CH4 inventory was assessed accurately.  相似文献   

2.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

3.
The primary objective of this study was to clarify the influence of crop plants on atmospheric methane (CH4) in an agriculture-dominated landscape in the Upper Midwest of the United States. Measurements were carried out at two contrasting scales. At the plant scale, CH4 fluxes from soybean and corn plants were measured with a laser-based plant chamber system. At the landscape scale, the land surface flux was estimated with a modified Bowen ratio technique using measurements made on a tall tower. The chamber data revealed a diurnal pattern for the plant CH4 flux: it was positive (an emission rate of 0.4?±?0.1 nmol m?2 s?1, average of soybean and corn, in reference to the unit ground area) during the day, and negative (an uptake rate of ?0.8?±?0.8 nmol m?2 s?1) during the night. At the landscape scale, the flux was estimated to be 14.8 nmol m?2 s?1 at night and highly uncertain during the day, but the available references and the flux estimates from the equilibrium methods suggested that the CH4 flux during the entire observation period was similar to the estimated nighttime flux. Thus, soybean and corn plants have a negligible role in the landscape-scale CH4 budget.  相似文献   

4.
Global warming is associated with the continued increase in the atmospheric concentrations of greenhouse gases; carbon dioxide, methane (CH4) and nitrous oxide. Wetlands constitute the largest single natural source of atmospheric CH4 in the world contributing between 100 and 231 Tg year?1 to the total budget of 503–610 Tg year?1, approximately 60 % of which is emitted from tropical wetlands. We conducted diffusive CH4 emission measurements using static chambers in river channels, floodplains and lagoons in permanent and seasonal swamps in the Okavango Delta, Botswana. Diffusive CH4 emission rates varied between 0.24 and 293 mg CH4 m?2 h?1, with a mean (±SE) emission of 23.2 ± 2.2 mg CH4 m?2 h?1 or 558 ± 53 mg CH4 m?2 day?1. These emission rates lie within the range reported for other tropical wetlands. The emission rates were significantly higher (P < 0.007) in permanent than in seasonal swamps. River channels exhibited the highest average fluxes at 31.3 ± 5.4 mg CH4 m?2 h?1 than in floodplains (20.4 ± 2.5 mg CH4 m?2 h?1) and lagoons (16.9 ± 2.6 mg CH4 m?2 h?1). Diffusive CH4 emissions in the Delta were probably regulated by temperature since emissions were highest (20–300 mg CH4 m?2 h?1) and lowest (0.2–3.0 mg m?2 h?1) during the warmer-rainy and cooler winter seasons, respectively. Surface water temperatures between December 2010 and January 2012 varied from 15.3 °C in winter to 33 °C in summer. Assuming mean inundation of 9,000 km2, the Delta’s annual diffusive emission was estimated at 1.8 ± 0.2 Tg, accounting for 2.8 ± 0.3 % of the total CH4 emission from global tropical wetlands.  相似文献   

5.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

6.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

7.
The environmental importance of methyl bromide (CH3Br) arises from its contribution to stratospheric ozone loss processes and, as a consequence, its emissions from anthropogenic sources are subject to the Montreal Protocol. A better understanding of the natural budget of CH3Br is required for assessing the benefit of anthropogenic emission reductions and for understanding any potential effects of environmental change on global CH3Br concentrations. Measurements of CH3Br flux in temperate woodland ecosystems, in particular, are very sparse, yet these cover a large fraction of terrestrial land surface. Results presented here from 18 months of field measurements of CH3Br fluxes in four static flux chambers in a woodland in Scotland and from enclosures of rotting wood and deciduous and coniferous leaf litter suggest net emissions from temperate woodlands. Net CH3Br fluxes in the woodland varied between the chambers, fluctuating between net uptake and net emissions (?73 to 279 ng m?2 h?1 across 161 individual measurements), and with no strong seasonality, but with time‐averaged net emission overall [27±57 (1 SD)] ng m?2 h?1]. This work demonstrates that scale‐up needs to be based on sufficient individual measurements to provide a reasonably constrained estimate of the long‐term mean. Mean (±1 SD) net CH3Br emissions from deciduous and coniferous leaf litter were 43 (±33) ng kg?1 (dry weight) h?1 and 80 (±37) ng kg?1 (dry weight) h?1, respectively, and ~1–2 ng kg?1 (fresh weight) h?1 from rotting woody litter. Despite the intrinsic variability, data obtained here consistently point to the conclusion that the temperate forest soil/litter ecosystem is a net source of CH3Br to the atmosphere.  相似文献   

8.
Rapid increases in human population and land transformation in arid and semi-arid regions are altering water, carbon (C) and nitrogen (N) cycles, yet little is known about how urban ephemeral stream channels in these regions affect biogeochemistry and trace gas fluxes. To address these knowledge gaps, we measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) before and after soil wetting in 16 ephemeral stream channels that vary in soil texture and organic matter in Tucson, AZ. Fluxes of CO2 and N2O immediately following wetting were among the highest ever published (up to 1,588 mg C m?2 h?1 and 3,121 μg N m?2 h?1). Mean post-wetting CO2 and N2O fluxes were significantly higher in the loam and sandy loam channels (286 and 194 mg C m?2 h?1; 168 and 187 μg N m?2 h?1) than in the sand channels (45 mg C m?2 h?1 and 7 μg N m?2 h?1). Factor analyses show that the effect of soil moisture, soil C and soil N on trace gas fluxes varied with soil texture. In the coarser sandy sites, trace gas fluxes were primarily controlled by soil moisture via physical displacement of soil gases and by organic soil C and N limitations on biotic processes. In the finer sandy loam sites trace gas fluxes and N-processing were primarily limited by soil moisture, soil organic C and soil N resources. In the loam sites, finer soil texture and higher soil organic C and N enhance soil moisture retention allowing for more biologically favorable antecedent conditions. Variable redox states appeared to develop in the finer textured soils resulting in wide ranging trace gas flux rates following wetting. These findings indicate that urban ephemeral channels are biogeochemical hotspots that can have a profound impact on urban C and N biogeochemical cycling pathways and subsequently alter the quality of localized water resources.  相似文献   

9.
Static chambers used for sampling methane (CH4) in wetlands are highly sensitive to soil disturbance. Temporary compression around chambers during sampling can inflate the initial chamber CH4 headspace concentration and/or lead to generation of non-linear, unreliable flux estimates that must be discarded. In this study, we tested an often-used rubber gasket (RG)-sealed static chamber against a water-filled gutter (WFG) seal design that could be set up and sampled from a distance of 2 m with a newly designed remote rod sampling system to reduce soil disturbance. Compared to conventional RG design, our remotely sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations (>3.6 ppm) from 66 to 6 % and nearly doubled the proportion of robust linear regressions (r 2 > 0.9) from 45 to 86 %. Importantly, the remote rod sampling system allows for more accurate and reliable CH4 sampling without costly boardwalk construction. This paper presents results demonstrating that the remote rod sampling system combined with WFG static chambers improves CH4 data reliability by reducing initial gas measurement variability due to chamber disturbance when tested on a mineral soil-restored wetland in Charles City County, Virginia, USA.  相似文献   

10.
In order to identify the effects of land-use/cover types, soil types and soil properties on the soil-atmosphere exchange of greenhouse gases (GHG) in semiarid grasslands as well as provide a reliable estimate of the midsummer GHG budget, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes of soil cores from 30 representative sites were determined in the upper Xilin River catchment in Inner Mongolia. The soil N2O emissions across all of the investigated sites ranged from 0.18 to 21.8 μg N m-2 h-1, with a mean of 3.4 μg N m-2 h-1 and a coefficient of variation (CV, which is given as a percentage ratio of one standard deviation to the mean) as large as 130%. CH4 fluxes ranged from -88.6 to 2,782.8 μg C m-2 h-1 (with a CV of 849%). Net CH4 emissions were only observed from cores taken from a marshland site, whereas all of the other 29 investigated sites showed net CH4 uptake (mean: -33.3 μg C m-2 h-1). CO2 emissions from all sites ranged from 3.6 to 109.3 mg C m-2 h-1, with a mean value of 37.4 mg C m-2 h-1 and a CV of 66%. Soil moisture primarily and positively regulated the spatial variability in N2O and CO2 emissions (R2?=?0.15–0.28, P?<?0.05). The spatial variation of N2O emissions was also influenced by soil inorganic N contents (P?<?0.05). By simply up-scaling the site measurements by the various land-use/cover types to the entire catchment area (3,900 km2), the fluxes of N2O, CH4 and CO2 at the time of sampling (mid-summer 2007) were estimated at 29 t CO2-C-eq d-1, -26 t CO2-C-eq d-1 and 3,223 t C d-1, respectively. This suggests that, in terms of assessing the spatial variability of total GHG fluxes from the soils at a semiarid catchment/region, intensive studies may focus on CO2 exchange, which is dominating the global warming potential of midsummer soil-atmosphere GHG fluxes. In addition, average GHG fluxes in midsummer, weighted by the areal extent of these land-use/cover types in the region, were approximately -30.0 μg C m-2 h-1 for CH4, 2.4 μg N m-2 h-1 for N2O and 34.5 mg C m-2 h-1 for CO2.  相似文献   

11.
Spatial or temporal forest–peatland transition zones were proposed as potential hot spots of methane (CH4) emissions. Consequently, paludified soils are an important component of boreal landscape biogeochemistry. However, their role in the regional carbon cycle remains unclear. This study presents CH4 fluxes from two forest–peatland transition zones, two wet forest sites and two clear-cut sites which were compared to fluxes of open peatlands and dry forest. The median fluxes measured using the closed-chamber technique varied from ? 0.04 to 12.6 mg m?2 h?1 during three climatically different years. The annual mean CH4 emissions of the forest–peatland transition zone were significantly lower than the fluxes of the open peatland sites, 7.9 ± 0.5 and 21.9 ± 1.6 g m?2a?1, respectively. The dry forest site was characterized by a small uptake of CH4 (? 2.3 ± 0.2 g m?2a?1). Although clear-cut forest area drastically increased in European Russia during the last two decades, if water level depths in these forests remains below 10 cm they do not act as CH4 sources. Fluxes of CH4 from the transition zone sites showed a higher response to soil temperature than to water table level. Fluxes of CH4 between the atmosphere and the two investigated peatlands were not significantly different, although a significant difference in water table level could be observed. The meteorological conditions of the investigated summers changed from being hot and dry in 2013 to cold and wet in 2014; the summer of 2015 was characterized as warmer and drier in the first half and colder and wetter in the second half. Significant differences in CH4 fluxes were measured only between 2014 and 2013. Significant differences in CH4 fluxes and in nonlinear regressions showed that the CH4 fluxes of the different site types such as dry forests, transition zones and open peatlands need to be modelled separately on a landscape level. Obviously, underlying processes vary with the ecosystem and (along with regional aspects) have to be understood first before large-scale modelling is possible.  相似文献   

12.
We performed field measurements on the spatial and temporal variability in CH4 emissions from stem surfaces of mature Fraxinus mandshurica Rupr. trees in a floodplain forest of northern Japan. Stem CH4 fluxes were measured by a static closed-chamber method at ca. 15 cm above ground on ten selected trees to test among-individual variability, and the diurnal and seasonal changes in three representative trees. Daytime stem CH4 emission rates varied between 81 and 1,305 µg CHm?2 h?1 among individual trees, and showed a spatial gradient apparently corresponding to the difference in water table depth at the experimental site. Stem CH4 fluxes were quite stable throughout a 24 h period for foliated trees in August and were similar for defoliated trees in November. Large differences were observed in the magnitude of seasonal changes in stem CH4 flux among individual trees; one sampled tree showed no clear seasonal changes in stem CH4 flux, while another tree exhibited drastic seasonal changes ranging larger than one order of magnitude. Results demonstrated the high variability in stem CH4 emissions in space and time, and suggested the importance of soil temperature, water table depth and porewater CH4 concentration as possible environmental factors controlling stem CH4 emissions from temperate forested wetlands.  相似文献   

13.
In northeastern Canada, at the ecotonal limit of the forest tundra and lichen woodland, a rise of the regional water table in the peatland systems was registered since Little Ice Age resulting in increasing pool compartment at the expense of terrestrial surfaces. We hypothesized that, with a mean water table closer to peat surface and higher pool density, these ecosystems would be great CH4 emitters. In summers 2009 and 2010, methane fluxes were measured in a patterned fen located in the northeastern portion of the La Grande river watershed to determine the contribution of the different microforms (lawns, hollows, hummocks, string, pools) to the annual CH4 budget. Mean seasonal CH4 fluxes from terrestrial microforms ranged between 12.9 and 49.4 mg m?2 day?1 in 2009 and 15.4 and 47.3 mg m?2 day?1 in 2010. Pool fluxes (which do not include ebullition fluxes) ranged between 102.6 and 197.6 mg CH4 m?2 day?1 in 2009 and 76.5 and 188.1 mg CH4 m?2 day?1 in 2010. Highest fluxes were measured in microforms with water table closer to peat surface but no significant relationship was observed between water table depth and CH4 fluxes. Spatially weighted CH4 budget demonstrates that, during the growing season, the studied peatland emitted 66 ± 31 in 2009 and 55 ± 26 mg CH4 m?2 day?1 in 2010, 79 % of which is accounted by pool fluxes. In a context where climate projections predict greater precipitations in northeastern Canada, these results indicate that this type of peatlands could contribute to modify the methane balance in the atmosphere.  相似文献   

14.
Benthic biogeochemistry and macrofauna were investigated six times over 1 year in a shallow sub-tropical embayment. Benthic fluxes of oxygen (annual mean ?918 μmol O2 m?2 h?1), ammonium (NH4 +), nitrate (NO3 ?), dissolved organic nitrogen, dinitrogen gas (N2), and dissolved inorganic phosphorus were positively related to OM supply (N mineralisation) and inversely related to benthic light (N assimilation). Ammonium (NH4 +), NO3 ? and N2 fluxes (annual means +14.6, +15.9 and 44.6 μmol N m?2 h?1) accounted for 14, 16 and 53 % of the annual benthic N remineralisation respectively. Denitrification was dominated by coupled nitrification–denitrification throughout the study. Potential assimilation of nitrogen by benthic microalgae (BMA) accounted for between 1 and 30 % of remineralised N, and was greatest during winter when bottom light was higher. Macrofauna biomass tended to be highest at intermediate benthic respiration rates (?1,000 μmol O2 m?2 h?1), and appeared to become limited as respiration increased above this point. While bioturbation did not significantly affect net fluxes, macrofauna biomass was correlated with increased light rates of NH4 + flux which may have masked reductions in NH4 + flux associated with BMA assimilation during the light. Peaks in net N2 fluxes at intermediate respiration rates are suggested to be associated with the stimulation of potential denitrification sites due to bioturbation by burrowing macrofauna. NO3 ? fluxes suggest that nitrification was not significantly limited within respiration range measured during this study, however comparisons with other parts of Moreton Bay suggest that limitation of coupled nitrification–denitrification may occur in sub-tropical systems at respiration rates exceeding ?1,500 μmol O2 m?2 h?1.  相似文献   

15.
Effect of water table on greenhouse gas emissions from peatland mesocosms   总被引:2,自引:0,他引:2  
Peatland landscapes typically exhibit large variations in greenhouse gas (GHG) emissions due to microtopographic and vegetation heterogeneity. As many peatland budgets are extrapolated from small-scale chamber measurements it is important to both quantify and understand the processes underlying this spatial variability. Here we carried out a mesocosm study which allowed a comparison to be made between different microtopographic features and vegetation communities, in response to conditions of both static and changing water table. Three mesocosm types (hummocks?+?Juncus effusus, hummocks?+?Eriophorum vaginatum, and hollows dominated by moss) were subjected to two water table treatments (0–5 cm and 30–35 cm depth). Measurements were made of soil-atmosphere GHG exchange, GHG concentration within the peat profile and soil water solute concentrations. After 14 weeks the high water table group was drained and the low water table group flooded. Measurement intensity was then increased to examine the immediate response to change in water table position. Mean CO2, CH4 and N2O exchange across all chambers was 39.8 μg m?2 s?1, 54.7 μg m?2 h?1 and ?2.9 μg m?2 h?1, respectively. Hence the GHG budget was dominated in this case by CO2 exchange. CO2 and N2O emissions were highest in the low water table treatment group; CH4 emissions were highest in the saturated mesocosms. We observed a strong interaction between mesocosm type and water table for CH4 emissions. In contrast to many previous studies, we found that the presence of aerenchyma-containing vegetation reduced CH4 emissions. A significant pulse in both CH4 and N2O emissions occurred within 1–2 days of switching the water table treatments. This pulsing could potentially lead to significant underestimation of landscape annual GHG budgets when widely spaced chamber measurements are upscaled.  相似文献   

16.
The magnitude of greenhouse gas (GHG) flux rates may be important in wet and intermediate wet forest soils, but published estimates are scarce. We studied the surface exchange of methane (CH4) and nitrous oxide (N2O) from soil along toposequences in two temperate deciduous forest catchments: Strødam and Vestskoven. The soil water regime ranged from fully saturated to aerated within the catchments. At Strødam the largest mean flux rates of N2O (15 μg N2O-N m?2 h?1) were measured at volumetric soil water contents (SWC) between 40 and 60% and associated with low soil pH compared to smaller mean flux rates of 0-5 μg N2O-N m?2 h?1 for drier (SWC < 40%) and wet conditions (SWC > 80%). At Vestskoven the same response of N2O to soil water content was observed. Average CH4 flux rates were highly variable along the toposequences (?17 to 536 μg CH4-C m?2 h?1) but emissions were only observed above soil water content of 45%. Scaled flux rates of both GHGs to catchment level resulted in emission of 322 and 211 kg CO2-equivalents ha?1 year?1 for Strødam and Vestskoven, respectively, with N2O contributing the most at both sites. Although the wet and intermediate wet forest soils occupied less than half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small proportions of wet soils contributes substantially to the emissions of N2O and CH4.  相似文献   

17.
CH4 emissions could vary with biotic and abiotic factors at different time scales. However, little is known about temporal dynamics of CH4 flux and its controls in coastal marshes. In this study, CH4 flux was continuously measured with the eddy covariance technique for 2 years in a subtropical salt marsh in eastern China. Wavelet analysis was applied to explore the multi-scale variations of CH4 flux and its controls. Additionally, partial wavelet coherence was used to disentangle confounding effects of measured variables. No consistent diurnal pattern was found in CH4 fluxes. However, the hot-moments of CH4 flux were observed after nighttime high tide on days near the spring tide. Periodic dynamics were also observed at multi-day, semilunar and seasonal scales. Tide height in summer had a negative effect on CH4 flux at the semilunar scale. Air temperature explained most variations in CH4 fluxes at the multi-day scale but CH4 flux was mainly controlled by PAR and GEP at the seasonal scale. Air temperature explained 48% and 56% of annual variations in CH4 fluxes in 2011 and 2012, respectively. In total, the salt marsh acted as a CH4 source (17.6 ± 3.0 g C–CH4 m?2 year?1), which was higher than most studies report for inland wetlands. Our results show that CH4 fluxes exhibit multiple periodicities and its controls vary with time scale; moreover, CH4 flux is strongly modified by tide. This study emphasizes the importance of ecosystem-specific measurements of CH4 fluxes, and more work is needed to estimate regional CH4 budgets.  相似文献   

18.
Small lakes in northern latitudes represent a significant source of CH4 to the atmosphere that is predicted to increase with warming in the Arctic. Yet, whole-lake CH4 budgets are lacking as are measurements of δ13C-CH4 and δ2H-CH4. In this study, we quantify spatial variability of diffusive and ebullitive fluxes of CH4 and corresponding δ13C-CH4 and δ2H-CH4 in a small, Arctic lake system with fringing wetland in southwestern Greenland during summer. Net CH4 flux was highly variable, ranging from an average flux of 7 mg CH4 m?2 d?1 in the deep-water zone to 154 mg CH4 m?2 d?1 along the lake margin. Diffusive flux accounted for ~8.5 % of mean net CH4 flux, with plant-mediated and ebullitive flux accounting for the balance of the total net flux. Methane content of emitted ebullition was low (mean ± SD 10 ± 17 %) compared to previous studies from boreal lakes and wetlands. Isotopic composition of net CH4 emissions varied widely throughout the system, with δ13C-CH4 ranging from ?66.2 to ?55.5 ‰, and δ2H-CH4 ranging from ?345 to ?258 ‰. Carbon isotope composition of CH4 in ebullitive flux showed wider variation compared to net flux, ranging from ?69.2 to ?49.2 ‰. Dissolved CH4 concentrations were highest in the sediment and decreased up the water column. Higher concentrations of CH4 in the hypoxic deep water coincided with decreasing dissolved O2 concentrations, while methanotrophic oxidation dominated in the epilimnion based upon decreasing concentrations and increasing values of δ13C-CH4 and δ2H-CH4. The most depleted 13C- and 2H-isotopic values were observed in profundal bottom waters and in subsurface profundal sediments. Based upon paired δ13C and δ2H observations of CH4, acetate fermentation was likely the dominant production pathway throughout the system. However, isotopic ratios of CH4 in deeper sediments were consistent with mixing/transition between CH4 production pathways, indicating a higher contribution of the CO2 reduction pathway. The large spatial variability in fluxes of CH4 and in isotopic composition of CH4 throughout a single lake system indicates that the underlying mechanisms controlling CH4 cycling (production, consumption and transport) are spatially heterogeneous. Net flux along the lake margin dominated whole-lake flux, suggesting the nearshore littoral area dominates CH4 emissions in these systems. Future studies of whole-lake CH4 budgets should consider this significant spatial heterogeneity.  相似文献   

19.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

20.
Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m?2 h?1) to a net emission in the wetter soils (0–90 μmol CH4 m?2 h?1). Seasonal variations of CH4 fluxes were related to soil hydrology in both upland and wet soils. Thus, in the upland soils, uptake rates increased with the decreasing soil moisture, whereas CH4 emission was inversely related to the water table depth in the wet soils. Spatial variability of CH4 exchange was related to the abundance of genes involved in CH4 oxidation and production, but there was no indication of a temporal link between microbial groups and CH4 exchange. Our data show that the abundances of genes involved in CH4 oxidation and production are strongly influenced by soil moisture and each other and grouped by the upland–wetland classification but not forest type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号