首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of 58 nuclearly encoded thylakoid-integral membrane proteins from four plant species was identified, and their amino termini were assigned unequivocally based upon mass spectrometry of intact proteins and peptide fragments. The dataset was used to challenge the Web tools ChloroP, TargetP, SignalP, PSORT, Predotar, and MitoProt II for predicting organelle targeting and transit peptide proteolysis sites. ChloroP and TargetP reliably predicted chloroplast targeting but only reliably predicted transit peptide cleavage sites for soluble proteins targeted to the stroma. SignalP (eukaryote settings) accurately predicted the transit peptide cleavage site for soluble proteins targeted to the lumen. SignalP (Gram-negative bacteria settings) reliably predicted peptide cleavage of integral thylakoid proteins inserted into the membrane via the "spontaneous" pathway. The processing sites of more common thylakoid-integral proteins inserted by the signal recognition peptide-dependent pathway were not well predicted by any of the programs. The results suggest the presence of a second thylakoid processing protease that recognizes the transit peptide of integral proteins inserted via the spontaneous mechanism and that this mechanism may be related to the secretory mechanism of Gram-negative bacteria.  相似文献   

2.
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.  相似文献   

3.
植物叶绿体类囊体膜及膜蛋白研究进展   总被引:5,自引:0,他引:5  
叶绿体是植物和真核藻类进行光合作用的场所。存在于叶绿体类囊体膜上的蛋白质复合物含有光反应所需的光合色素和电子传递链组分,在光合作用过程中,光化学反应发生在类囊体膜上。因此,类囊体膜是光能向化学能转化的主要场所,因而也一直是光合作用研究的热点。叶绿体类囊体膜的深入研究可以促进光合作用的分子机理研究。该文就叶绿体类囊体膜的三维构象及类囊体膜蛋白的组成和功能研究进行了综述。  相似文献   

4.
The domain organization of the plant thylakoid membrane   总被引:2,自引:0,他引:2  
A model of the photosynthetic membrane from higher plants is presented. The different photosystems, PSI alpha, PSI beta, PSII alpha and PSII beta, are located in separate domains. The photosystems with the largest antenna systems, the alpha systems, are in the grana and the other in the stroma lamellae. In each grana disc PSI alpha is located in a flat annulus surrounding a circular PSII alpha domain. In this the PSII alpha units with the largest antennae are found in the center. The model is consistent with results from recent membrane fractionation experiments.  相似文献   

5.
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.  相似文献   

6.
A series of thylakoid membrane proteins, including PsbX, PsbY and PsbW, are synthesized with cleavable signal peptides yet inserted using none of the known Sec/SRP/Tat/Oxa1-type insertion machineries. Here, we show that, although superficially similar to Sec-type signal peptides, these thylakoidal signal peptides contain very different determinants. First, we show that basic residues in the N-terminal domain are not important, ruling out electrostatic interactions as an essential element of the insertion mechanism, and implying a fundamentally different targeting mechanism when compared with the structurally similar M13 procoat. Second, we show that acidic residues in the C-domain are essential for the efficient maturation of the PsbX and PsbY-A1 peptides, and that even a single substitution of the -5 Glu by Val in the PsbX signal peptide abolishes maturation in the thylakoid. Processing efficiency is restored to an extent, but not completely, by the highly hydrophilic Asn, implying that this domain is required to be hydrophilic, but preferably negatively charged, in order to present the cleavage site in an optimal manner. We show that substitution of the PsbX C-domain Glu residues by Val leads to a burial of the cleavage site within the bilayer although insertion is unaffected. Finally, we show that substitution of the Glu residues in the lumenal A2 loop of the PsbY polyprotein leads to a block in cleavage on the stromal side of the membrane, and present evidence that the PsbY-A2 signal peptide is required to be relatively hydrophilic and unable to adopt a transmembrane conformation on its own. These data indicate that, rather than being merely additional hydrophobic regions to promote insertion, the signal peptides of these thylakoid proteins are complex domains with uniquely stringent requirements in the C-domain and/or translocated loop regions.  相似文献   

7.
The green fluorescent protein (GFP) was used as a marker to study the intracellular transport of vacuolar and secretory proteins in yeast. Therefore, the following gene constructs were expressed in Saccharomyces cerevisiae under control of the GAL1 promoter: GFP N-terminally fused to the yeast secretory invertase (INV-GFP), the plant vacuolar chitinase (CHN-GFP) and its secretory derivative (CHNDeltaVTP-GFP), which did not contain the vacuolar targeting peptide (VTP), both chitinase forms (CHN and CHNDeltaVTP), GFP without any targeting information and two secretory GFP variants with and without the VTP of chitinase (N-GFP-V and N-GFP). Whereas chitinase without VTP is accumulated in the culture medium the other gene products are retained inside the cell up to 48 h of induction. Independently of a known VTP they are transported to the vacuole, so far as they contain a signal peptide for entering the endoplasmic reticulum. This was demonstrated by confocal laser scanning microscopy, immunocytochemical analysis and subcellular fractionation experiments as well. The transport of the GFP fusion proteins is temporary delayed by a transient accumulation in electron-dense structures very likely derived from the ER, because they also contain the ER chaperone Kar2p/Bip. Our results demonstrate that GFP directs secretory proteins without VTP to the yeast vacuole, possibly by the recognition of an unknown vacuolar signal and demonstrates, therefore, a first limitation for the application of GFP as a marker for the secretory pathway in yeast.  相似文献   

8.
Herpesvirus maturation requires translocation of glycoprotein B homologue from the endoplasmic reticulum to the inner nuclear membrane. Glycoprotein B of human cytomegalovirus was used in this context as a model protein. To identify a specific signal sequence within human cytomegalovirus glycoprotein B acting in a modular fashion, coding sequences were recombined with reporter proteins. Immunofluorescence and cell fractionation demonstrated that a short sequence element within the cytoplasmic tail of human cytomegalovirus glycoprotein B was sufficient to translocate the membrane protein CD8 to the inner nuclear membrane. This carboxyl-terminal sequence had no detectable nuclear localization signal activity for soluble beta-Galactosidase and could not be substituted by the nuclear localization signal of SV40 T antigen. For glycoprotein B of herpes simplex virus, a carboxyl-terminal element with comparable properties was found. Further experiments showed that the amino acid sequence DRLRHR of human cytomegalovirus glycoprotein B (amino acids 885-890) was sufficient for nuclear envelope translocation. Single residue mutations revealed that the arginine residues in positions 4 and 6 of the DRLRHR sequence were essential for its function. These results support the view that transmembrane protein transport to the inner nuclear membrane is controlled by a mechanism different from that of soluble proteins.  相似文献   

9.
Much progress has been made in recent years regarding the mechanisms of targeting of secretory proteins to, and across, the endoplasmic reticulum (ER) membrane. Many of the cellular components involved in mediating translocation across this bilayer have been identified and characterized. Polypeptide domains of secretory proteins, termed signal peptides, have been shown to be necessary, and in most cases sufficient, for entry of preproteins into the lumen of the ER. These NH2-terminal segments appear to serve multiple roles in targeting and translocation. The structural features which mediate their multiple functions are currently the subject of intense study.  相似文献   

10.
An overview is given of electrical events that occur in plant chloroplasts in association with their energization and subsequent photosynthetic performance. Special emphasis is given to the measuring techniques, in particular application of patch-clamp methods, which enable comparison of light-induced photocurrent and -potential kinetics of the thylakoid with kinetics of changes in chlorophyll fluorescence yield.  相似文献   

11.
Over the past decade, some familiar themes have emerged on how proteins are inserted into or translocated across the plant chloroplast thylakoid membrane and bacterial inner membranes. In the SecA and signal recognition particle (SRP) pathways, nucleotides and soluble factors are used to translocate proteins across the membrane bilayer in the unfolded state. However, the delta pH-dependent pathway in thylakoids uses a radically different mechanism: transport of proteins across the membrane is driven by the transmembrane pH gradient, and neither stromal factors nor nucleotide triphosphates are needed. In addition, this pathway, which requires the membrane-bound protein Hcf106, appears to translocate proteins in a tightly folded form. Recently, a similar pathway has been shown to operate in eubacteria, and several of its components have been identified.  相似文献   

12.
A peptide corresponding to amino acids 1-27 of preornithine carbamyltransferase (pOCT) has been chemically synthesized. When added to energized mitochondria in vitro, 20 microM of the peptide, designated pO(1-27), resulted in a collapse of the electrochemical potential across the mitochondrial inner membrane. This effect on transmembrane potential was not observed, however, when pO(1-27) was added to energized mitochondria under conditions that support in vitro import of precursor proteins (i.e. in the presence of reticulocyte lysate). The latter finding, therefore, made possible an examination of the ability of pO(1-27) to block import of homologous and heterologous proteins into the organelle. At 5-10 microM, pO(1-27) prevented import of pOCT in vitro; inhibition was overcome by increasing the concentration of pOCT. In contrast, pO(16-27), a peptide corresponding to amino acids 16-27 of pOCT and exhibiting a charge:mass ratio similar to pO(1-27) had no such inhibitory effect. pO(1-27) blocked import of other unrelated precursor proteins destined either for the mitochondrial matrix (pre-malate dehydrogenase and a hybrid protein containing the signal sequence of pre-carbamyl phosphate synthetase) or for the mitochondrial inner membrane (pre-thermogenin).  相似文献   

13.
A procedure of two-dimensional gel electrophoresis adapted for application on membrane proteins from the thylakoids is described. It involves isoelectric focusing in the first dimension and size dependent electrophoresis in the second dimension. About 100 polypeptides are clearly separated with relatively little streaking. About 20 polypeptides are identified by immunoblotting or location in the gel. They are the polypeptides of the PS I core, the 64 kDa protein, the and subunits of CF1 ATPase, cytochrome f, Rieske iron-sulfur protein, the 23 kDa and 33 kDa polypeptides of the oxygen evolving complexes, CP29, CP24, CP27 and CP25 (last two proteins belong to LHCII). Some proteins give rise to two or more separate spots indicating a separation of different isoforms of these proteins. Among them, the LHCII polypeptides (27 kDa and 25 kDa) were each resolved into at least three spots in the pH range 4.75–5.90; the Rieske FeS protein, as published elsewhere (Yu et al. 1994), was separated into two forms having different isoelectric points (pI 5.1 and 5.4), each of them was also microsequenced; the 64 kDa protein claimed to be a LHCII-kinase was found to be multiple forms appearing in at least two isoforms with pI 6.2 (K1) and 6.0 (K2) respectively, furthermore, K1 can be resolved into two subpopulations.The lateral distribution of these proteins in the thylakoid membrane was determined by analysing the vesicles originating from different parts of the thylakoids. The data obtained from this analysis can be partially used as markers for different thylakoid domains.This procedure for sample solubilization and 2-D electrophoresis is useful for the analysis of the polypeptide composition of vesicles originating from the thylakoid membrane and for microsequences of individual polypeptides isolated from the 2-D gel.  相似文献   

14.
Thylakoid membranes of pea were used to study competition between extra-membrane fragments and their parental membrane-bound proteins. Phosphorylated and unphosphorylated fragments of light harvesting complex II (LHC II) from higher plants were used to compete with LHC II for interactions with itself and with other thylakoid protein complexes. Effects of these peptide fragments of LHC II and of control peptides were followed by 80 K chlorophyll fluorescence spectroscopy of isolated thylakoids. The phosphorylated LHC II fragment competes with membrane-bound phosphoproteins in the phosphatase reaction. The same fragment accelerates the process of dark-to-light adaptation and decreases the rate of the light-to-dark adaptation when these are followed by fluorescence spectroscopy. In contrast, the non-phosphorylated LHC II peptide does not affect the rate of adaptation but produces results consistent with inhibition of formation of a quenching complex. In this quenching complex we propose that LHC II remains inaccessible to the LHC II kinase, explaining an observed decrease in LHC II phosphorylation in the later stages of the time-course of phosphorylation. The most conspicuous protein which is steadily phosphorylated during the time-course of phosphorylation is the 9 kDa (psbH) protein. The participation of the phosphorylated form of psbH in the quenching complex, where it is inaccessible to the phosphatase, may explain its anomalously slow dephosphorylation. The significance of the proposed complex of LHC II with phospho-psbH is discussed.Abbreviations LHC II light harvesting complex II - PS II Photosystem II - PS I Photosystem I  相似文献   

15.
Some chloroplast thylakoid membrane proteins have anomalously low pKa (near 7.8) amine groups, indicating that the buffering groups may be buried in hydrophobic regions and/or close to other positive charges. Other work has shown that the low pKa amine group array is not in ready equilibrium with either the inner or outer bulk aqueous phases (Laszlo, J.A., Baker, G.M. and Dilley, R.A. (1984) J. Bioenerg. Biomembranes, 16, 37–51). Acetic anhydride reacts with the neutral amine and has been used as a probe for labeling the low pKa amines. The buried array of buffering groups can be labeled with [3H]acetic anhydride in the dark only after the membranes were made leaky to protons with uncoupler addition. Sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis was used to separate the polypeptides and identify those that show the uncoupler-dependent labeling increase. Included in that group are polypeptides known to be associated with Photosystem II having Mr 17000, 22000 and 31000, some of the light-harvesting pigment proteins with Mr 24000–28000, the CF0 component with Mr 8000 and some polypeptides associated with Photosystem I. A protein with Mr 15000 showed very large changes in labeling, but the identity of this polypeptide is unknown. The arrays of buried amine buffering groups are diversely distributed among membrane proteins and it is not clear what role, if any, they play in membrane function.  相似文献   

16.
Choquet Y  Vallon O 《Biochimie》2000,82(6-7):615-634
The thylakoid membrane of chloroplasts contains four major protein complexes, involved in the photosynthetic electron transfer chain and in ATP synthesis. These complexes are built from a large number of polypeptide subunits encoded either in the nuclear or in the plastid genome. In this review, we are considering the mechanism that couples assembly (association of the polypeptides with each other and with their cofactors) with the upstream and downstream steps of the biogenetic pathway, translation and proteolytic degradation. We present the contrasting images of assembly that have emerged from a variety of approaches (studies of photosynthesis mutants, developmental studies and direct biochemical analysis of the kinetics of assembly). We develop the concept of control by epistasy of synthesis, through which the translation of certain subunits is controlled by the state of assembly of the complex and address the question of its mechanisms. We describe additional factors that assist in the integration and assembly of thylakoid membrane proteins.  相似文献   

17.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

18.
The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that β-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids.Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and β-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.  相似文献   

19.
The twin-arginine translocation (Tat) pathway, one of four protein transport pathways operating at the thylakoid membrane of chloroplasts, shows remarkable substrate flexibility. Here, we have analyzed the thylakoid transport of chimeric tandem substrates that are composed of two different passenger proteins fused to a single Tat transport signal. The chimera 23/23-EGFP in which the reporter protein EGFP is connected to the C-terminus of the OEC23 precursor shows that a single Tat transport signal is sufficient to mediate transport of two distinct passenger proteins in a row. Replacing the transit peptide of OEC23 in 23/23-EGFP by its homolog from OEC16 yields the chimera 16/23-EGFP, which can likewise be fully translocated by the Tat pathway across the thylakoid membrane. However, transport of 16/23-EGFP is retarded at specific steps in the transport process leading to the temporary and consecutive accumulation of three translocation intermediates with distinct membrane topology. They are associated with two oligomeric membrane complexes presumably representing TatBC-receptor complexes. The composition of the translocation intermediates as determined by immunoprecipitation experiments suggests that the two passenger proteins are translocated in a stepwise manner across the membrane.  相似文献   

20.
Glucose-fructose oxidoreductase (GFOR), a periplasmic protein of Zymomonas mobilis, is synthesized as a precursor polypeptide with a twin-R signal peptide for Sec-independent protein export in bacteria. In higher plant chloroplasts, twin-R signal peptides are specific targeting signals for the Sec-independent delta pH pathway of the thylakoid membrane system. In agreement with the assumed common phylogenetic origin of the two protein transport mechanisms, GFOR can be efficiently translocated by the delta pH-dependent pathway when analyzed with isolated thylakoid membranes. Transport is sensitive to the ionophore nigericin and competes with specific substrates for the delta pH-dependent transport route. In contrast, neither sodium azide nor enzymatic destruction of the nucleoside triphosphates in the assays affects thylakoid transport of GFOR indicating that the Sec apparatus is not involved in this process. Mutagenesis of the twin-R motif in the GFOR signal peptide prevents membrane translocation of the protein emphasizing the importance of these residues for the transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号